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(1) Note that for |z| < 1 we have: 1 + z
3 6∈ R<0, thus log(1 + z

3 ) ∈ O(D1(0)).

Solution 1.
∮
|z|=1

log(1+ z
3 )

z3 dz =
∞∑
n=1

∮
|z|=1

− (− z
3 )

n

n
dz
z3 = −πi9 .

Here we are allowed to change the integration and the summation because the series converges uniformly in D1(0).

(And the series converges uniformly in D1(0), e.g. because it converges in D3(0).)

Solution 2. By the integral presentation of Cauchy (for derivatives) we have:

∮
|z|=1

log(1 + z
3 )

z3
dz =

2πi

2

(
log(1 +

z

3
)
)′′
|z=0 = − πi

9(1 + z
3 )2
|z=0 = −πi

9
.

(2) Solution 1. The denominator vanishes at the points 0,±π. These are the only points where f could be non-
holomorphic. But the limits lim

z→0
f(z), lim

z→π
f(z), lim

z→−π
f(z) exist and are finite. Therefore the points 0,±π are

removable singularities, thus f extends to a holomorphic function on the whole C. Thus, by Cauchy theorem, the
primitive function of f exists on the whole C. And in particular on C \D10(0).

Solution 2. To prove the existence of a primitive function, it is enough to check the vanishing
∮
γ

f(z)dz = 0 for any

closed curve γ. The function is obviously holomorphic in C\D10(0), thus the only integral to check is
∮

|z|=10

sin(z)
z(z2−π2)dz.

Expand the fraction: 1
z(z2−π2) = a

z + b
z−π + c

z+π , with some coefficients a, b, c ∈ C. Note:
∮

|z|=10

sin(z)
z dz

Cauchy
==

2πi · sin(0) = 0. Similarly
∮

|z|=10

sin(z)
z±π dz = sin(±π) = 0. Thus

∮
|z|=10

sin(z)
z(z2−π2)dz = 0. Therefore (e.g. by Morrera

theorem) there exists a primitive function of f , on C \D10(0).

(3) As f(0) = 0 but does not vanish identically, the zero of f at z = 0 is of a finite order. Thus f(z) = zkg(z), for
some k ∈ N and g(z) ∈ O(C) with g(0) 6= 0. Now, the holomorphic function g satisfies: |g||z|=1 = 1. Thus, by

the argument of maximum, |g(z)| ≤ 1 on D1(0). But g does not vanish on D1(0), thus 1
g ∈ O(D1(0)). Again, the

argument of maximum gives: | 1
g(z) | ≤ 1 on D1(0). Therefore |g(z)| ≡ 1 on D1(0). As g is holomorphic, this implies:

g(z) = const on D1(0).

Remarks i. Many students thought that any function satisfying |f(0)| = 0, |f ||z|=1 = 1, must be of the form
f(z) = cz. (”by Schwartz lemma”) Some thought that just having |f(1)| = 1 would suffice.

ii. To remind: there is no meaning to ”w < z” for complex numbers.

(4) f is holomorphic except possibly at the following points: z = 100 or {sin(z) = 2πik}k∈Z. By the direct check:
(a) The points where sin(z) = 0 are removable singularities ( lim

z→πn
f(z) exists and is finite).

(b) The points where sin(z) = 2πik 6= 0 are (simple) poles.
(c) The point z = 100 is an essential singularity.

Thus f extends to a holomorphic function on C\
{

100, {sin(z) = 2πik}0 6=k∈Z
}

. Let z0 be the point among {sin(z) =

2πik}06=k∈Z which is the closest to 2. Then the radius of convergence is |z0 − 2|.

Remark Most students overlooked the points {sin(z) = 2πik}06=k∈Z. Those who overlooked these points, but
treated carefully all the rest (identified the (non-)removable points) have lost just one point out of 20.

To find z0 we consider the equation eiz−e−iz

2i = 2πki. Thus Re(z) ∈ πZ, while t = Im(z) satisfies: cos(Re(z))(et−
e−t) = 4πk. As z0 is the closest point to 2, we have: Re(z0) = π, while t = Im(z0) satisfies: et − e−t = −4π.

Therefore et = −2π +
√

4π2 + 1. Finally, the radius of convergence is: |it− 2|.
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(5) Solution 1. As f is holomorphic, it is inifitely differentiable at each point. Thus the derivative can be computed in

various ways, e.g. f ′(z0) = lim
z1,z2→z0
z1 6=z2

f(z1)−f(z2)
z1−z2 . By the assumption the expression f(z1)−f(z2)

z1−z2 vanishes at some points

in any neighborhood of z0. Therefore (as the limit exists) lim
z1,z2→z0
z1 6=z2

f(z1)−f(z2)
z1−z2 = 0. Thus f ′(z0) = 0 for any z0 ∈ C.

Solution 2. As f is holomorphic, it is analytic at each point. Take the Taylor expansion of f at z = z0:

f(z) = f(z0) + f ′|z0(z − z0) +

∞∑
n=2

(z − z0)n
f (n)|z0
n!

.

Then f(z1)− f(z2) = (z1 − z2)
(
f ′|z0 +

∞∑
n=2

f(n)|z0
n!

(z1−z0)n−(z2−z0)n
z1−z2

)
.

Using the assumption, for any ε choose z1, z2 ∈ Dε(z0) such that f(z1) = f(z2). Then we get: f ′|z0 +
∞∑
n=2

f(n)|z0
n!

(z1−z0)n−(z2−z0)n
z1−z2 = 0.

Finally, note that for n ≥ 2 holds: lim
ε→0

(z1−z0)n−(z2−z0)n
z1−z2 = 0. (e.g. open the brackets)

As the series converges uniformly (and ε can be chosen arbitrarily small), we get:

f ′|z0 = − lim
ε→0

∞∑
n=2

f (n)|z0
n!

(z1 − z0)n − (z2 − z0)n

z1 − z2
= −

∞∑
n=2

lim
ε→0

f (n)|z0
n!

(z1 − z0)n − (z2 − z0)n

z1 − z2
= 0.

Therefore f ′ vanishes at each point of C, thus f = const.

Remarks i. In the case of real valued functions the solution is much shorter. By Lagrange’s theorem, there exists

c ∈ [z1, z2] satisfying f ′(c) = f(z1)−f(z2)
z1−z2 = 0. Thus f ′ has zeros in any neighborhood of any point, thus f ′ ≡ 0.

ii. Note that the condition f(z1) = f(z2) is given for pairs of points. This does not imply any sequence {zn} such
that f(zn) = f(zn+1).


