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(1) Note that for |z| < 1 we have: 14 £ & R, thus log(1 + ) € O(D1(0)).
Solution 1. § i, =3 § AL o g
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Here we are allowed to change the integration and the summation because the series converges uniformly in D;(0).

(And the series converges uniformly in D;(0), e.g. because it converges in D3(0).)

Solution 2. By the integral presentation of Cauchy (for derivatives) we have:
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(2) Solution 1. The denominator vanishes at the points 0,4+n. These are the only points where f could be non-
holomorphic. But the limits lin% f(2), lim f(z), lim f(2) exist and are finite. Therefore the points 0,4 are
z— z—T Z—>—T

removable singularities, thus f extends to a holomorphic function on the whole C. Thus, by Cauchy theorem, the
primitive function of f exists on the whole C. And in particular on C\ D1, (0).

Solution 2. To prove the existence of a primitive function, it is enough to check the vanishing § f(z)dz = 0 for any
¥
closed curve . The function is obviously holomorphic in C\ D1 (0), thus the only integral to checkis § Z(SZT _(?2) dz.
|z|=10
sir;(z) dz Cau:chy

Expand the fraction: ﬁ =2+ b_ 4 < with some coefficients a,b,¢ € C. Note: $

zZ—T z+m)
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2mi - sin(0) = 0. Similarly ¢ Si"T(;)dz = sin(xm) = 0. Thus ¢ Z(“j;‘fj}z)dz = 0. Therefore (e.g. by Morrera
|z|=10 |z]=10

theorem) there exists a primitive function of f, on C\ D;¢(0).

(3) As f(0) = 0 but does not vanish identically, the zero of f at z = 0 is of a finite order. Thus f(z) = z¥g(z), for
some k € N and g(z) € O(C) with g(0) # 0. Now, the holomorphic function g satisfies: [g|.=; = 1. Thus, by
the argument of maximum, |g(z)] < 1 on D;(0). But g does not vanish on D;(0), thus % € O(D41(0)). Again, the
argument of maximum gives: |ﬁ| <1 on D1(0). Therefore |g(z)] =1 on D1(0). As g is holomorphic, this implies:
g(z) = const on D1 (0).

Remarks i. Many students thought that any function satisfying |f(0)] = 0, |f]jzj=1 = 1, must be of the form
f(z) = cz. ("by Schwartz lemma”) Some thought that just having | f(1)] = 1 would suffice.
ii. To remind: there is no meaning to "w < z” for complex numbers.

(4) f is holomorphic except possibly at the following points: z = 100 or {sin(z) = 2mik}rez. By the direct check:
(a) The points where sin(z) = 0 are removable singularities ( lim f(z) exists and is finite).
Z—TNn
(b) The points where sin(z) = 2mik # 0 are (simple) poles.
(¢) The point z = 100 is an essential singularity.
Thus f extends to a holomorphic function on C\ {1007 {sin(z) = 27rik:}07gkez}. Let zo be the point among {sin(z) =

2mik}oxkez which is the closest to 2. Then the radius of convergence is |z — 2|.

Remark Most students overlooked the points {sin(z) = 2mik}oxrez. Those who overlooked these points, but
treated carefully all the rest (identified the (non-)removable points) have lost just one point out of 20.

To find 2 we consider the equation £ _2571'2 = 2rki. Thus Re(z) € 7Z, while t = I'm(z) satisfies: cos(Re(z))(e! —
e~ ') = 4nk. As zp is the closest point to 2, we have: Re(z9) = m, while t = Im(zo) satisfies: e’ —e™*
Therefore e = —2m + v/472 + 1. Finally, the radius of convergence is: |it — 2|.

= —A4r.



(5) Solution 1. As f is holomorphic, it is inifitely differentiable at each point. Thus the derivative can be computed in

various ways, e.g. f'(z0) = lim % By the assumption the expression % vanishes at some points
1,%2 0
z1#£22
in any neighborhood of zo. Therefore (as the limit exists) lim _ % = 0. Thus f'(z9) =0 for any 2z, € C.
1,22 0
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Solution 2. As f is holomorphic, it is analytic at each point. Take the Taylor expansion of f at z = zq:

o0
nf(n)
F(z) = fz0) + oz = 20) + > (= — 20) T|

n=2 .

= () — n__ _ n

Then f(z1) ~ () = (21— 22) (s + 3 Lo Caman)’“foazzol”)
n=2
Using the assumption, for any e choose z1,z2 € D(zo) such that f(z1) = f(z2). Then we get: f'|,, +
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Finally, note that for n > 2 holds: lir% % = 0. (e.g. open the brackets)
€E—
As the series converges uniformly (and e can be chosen arbitrarily small), we get:
e (n) _ n _ _ n 0 (n) _ n _ _ n
flo=—lm Y P (21— 20)" = (22 = 20)" o [ (21— 20)" — (22— 20)"
e—0 o n! Z1 — %2 oy e—=0 n! Z1 — %2

Therefore f’ vanishes at each point of C, thus f = const.

Remarks i. In the case of real valued functions the solution is much shorter. By Lagrange’s theorem, there exists
¢ € [21, 22] satisfying f'(c) = W = 0. Thus f’ has zeros in any neighborhood of any point, thus f/ = 0.

ii. Note that the condition f(z1) = f(z2) is given for pairs of points. This does not imply any sequence {z,} such
that f(zn) = f(2n+1)-



