(1) Note that for |z| < 1 we have: $1 + \frac{z}{3} \notin \mathbb{R}_{<0}$, thus $log(1 + \frac{z}{3}) \in \mathcal{O}(D_1(0))$. Solution 1. $\oint_{|z|=1} \frac{log(1+\frac{z}{3})}{z^3} dz = \sum_{n=1}^{\infty} \oint_{|z|=1} -\frac{(-\frac{z}{3})^n}{n} \frac{dz}{z^3} = -\frac{\pi i}{9}$.

Here we are allowed to change the integration and the summation because the series converges uniformly in $D_1(0)$. (And the series converges uniformly in $\overline{D_1(0)}$, e.g. because it converges in $D_3(0)$.)

Solution 2. By the integral presentation of Cauchy (for derivatives) we have:

$$\oint_{|z|=1} \frac{\log(1+\frac{z}{3})}{z^3} dz = \frac{2\pi i}{2} \left(\log(1+\frac{z}{3}) \right)^{''} |_{z=0} = -\frac{\pi i}{9(1+\frac{z}{3})^2} |_{z=0} = -\frac{\pi i}{9}$$

(2) <u>Solution 1.</u> The denominator vanishes at the points $0, \pm \pi$. These are the only points where f could be nonholomorphic. But the limits $\lim_{z\to 0} f(z)$, $\lim_{z\to\pi} f(z)$, $\lim_{z\to-\pi} f(z)$ exist and are finite. Therefore the points $0, \pm \pi$ are removable singularities, thus f extends to a holomorphic function on the whole \mathbb{C} . Thus, by Cauchy theorem, the primitive function of f exists on the whole \mathbb{C} . And in particular on $\mathbb{C} \setminus D_{10}(0)$.

Solution 2. To prove the existence of a primitive function, it is enough to check the vanishing $\oint_{\gamma} f(z)dz = 0$ for any closed curve γ . The function is obviously holomorphic in $\mathbb{C} \setminus D_{10}(0)$, thus the only integral to check is $\oint_{|z|=10} \frac{\sin(z)}{z(z^2-\pi^2)}dz$. Expand the fraction: $\frac{1}{z(z^2-\pi^2)} = \frac{a}{z} + \frac{b}{z-\pi} + \frac{c}{z+\pi}$, with some coefficients $a, b, c \in \mathbb{C}$. Note: $\oint_{|z|=10} \frac{\sin(z)}{z}dz \xrightarrow{Cauchy} 2\pi i \cdot \sin(0) = 0$. Similarly $\oint_{|z|=10} \frac{\sin(z)}{z\pm\pi}dz = \sin(\pm\pi) = 0$. Thus $\oint_{|z|=10} \frac{\sin(z)}{z(z^2-\pi^2)}dz = 0$. Therefore (e.g. by Morrera theorem) there exists a primitive function of f, on $\mathbb{C} \setminus D_{10}(0)$.

(3) As f(0) = 0 but does not vanish identically, the zero of f at z = 0 is of a finite order. Thus $f(z) = z^k g(z)$, for some $k \in \mathbb{N}$ and $g(z) \in \mathcal{O}(\mathbb{C})$ with $g(0) \neq 0$. Now, the holomorphic function g satisfies: $|g|_{|z|=1} = 1$. Thus, by the argument of maximum, $|g(z)| \leq 1$ on $D_1(0)$. But g does not vanish on $D_1(0)$, thus $\frac{1}{g} \in \mathcal{O}(D_1(0))$. Again, the argument of maximum gives: $|\frac{1}{g(z)}| \leq 1$ on $D_1(0)$. Therefore $|g(z)| \equiv 1$ on $D_1(0)$. As g is holomorphic, this implies: g(z) = const on $D_1(0)$.

<u>Remarks</u> i. Many students thought that any function satisfying |f(0)| = 0, $|f|_{|z|=1} = 1$, must be of the form f(z) = cz. ("by Schwartz lemma") Some thought that just having |f(1)| = 1 would suffice. ii. To remind: there is no meaning to "w < z" for complex numbers.

- (4) f is holomorphic except possibly at the following points: z = 100 or $\{sin(z) = 2\pi ik\}_{k \in \mathbb{Z}}$. By the direct check:
 - (a) The points where sin(z) = 0 are removable singularities $(\lim_{z \to \pi n} f(z))$ exists and is finite).
 - (b) The points where $sin(z) = 2\pi i k \neq 0$ are (simple) poles.
 - (c) The point z = 100 is an essential singularity.

Thus f extends to a holomorphic function on $\mathbb{C} \setminus \left\{ 100, \{sin(z) = 2\pi ik\}_{0 \neq k \in \mathbb{Z}} \right\}$. Let z_0 be the point among $\{sin(z) = 2\pi ik\}_{0 \neq k \in \mathbb{Z}}$ which is the closest to 2. Then the radius of convergence is $|z_0 - 2|$.

<u>Remark</u> Most students overlooked the points $\{sin(z) = 2\pi ik\}_{0 \neq k \in \mathbb{Z}}$. Those who overlooked these points, but treated carefully all the rest (identified the (non-)removable points) have lost just one point out of 20.

To find z_0 we consider the equation $\frac{e^{iz}-e^{-iz}}{2i} = 2\pi ki$. Thus $Re(z) \in \pi\mathbb{Z}$, while t = Im(z) satisfies: $cos(Re(z))(e^t - e^{-t}) = 4\pi k$. As z_0 is the closest point to 2, we have: $Re(z_0) = \pi$, while $t = Im(z_0)$ satisfies: $e^t - e^{-t} = -4\pi$. Therefore $e^t = -2\pi + \sqrt{4\pi^2 + 1}$. Finally, the radius of convergence is: |it - 2|.

(5) Solution 1. As f is holomorphic, it is inifitely differentiable at each point. Thus the derivative can be computed in various ways, e.g. $f'(z_0) = \lim_{\substack{z_1, z_2 \to z_0 \\ z_1 \neq z_2}} \frac{f(z_1) - f(z_2)}{z_1 - z_2}$. By the assumption the expression $\frac{f(z_1) - f(z_2)}{z_1 - z_2}$ vanishes at some points

in any neighborhood of z_0 . Therefore (as the limit exists) $\lim_{\substack{z_1,z_2 \to z_0 \\ z_1 \neq z_2}} \frac{f(z_1) - f(z_2)}{z_1 - z_2} = 0$. Thus $f'(z_0) = 0$ for any $z_0 \in \mathbb{C}$.

<u>Solution 2.</u> As f is holomorphic, it is analytic at each point. Take the Taylor expansion of f at $z = z_0$:

$$f(z) = f(z_0) + f'|_{z_0}(z - z_0) + \sum_{n=2}^{\infty} (z - z_0)^n \frac{f^{(n)}|_{z_0}}{n!}$$

Then $f(z_1) - f(z_2) = (z_1 - z_2) \left(f'|_{z_0} + \sum_{n=2}^{\infty} \frac{f^{(n)}|_{z_0}}{n!} \frac{(z_1 - z_0)^n - (z_2 - z_0)^n}{z_1 - z_2} \right).$ Using the assumption, for any ϵ choose $z_1, z_2 \in D_{\epsilon}(z_0)$ such that $f(z_1) = f(z_2)$. Then we get: $f'|_{z_0} + \frac{1}{2} \int_{z_0}^{z_0} \frac{(z_1 - z_0)^n - (z_0 - z_0)^n}{z_1 - z_2} dz_0$

 $\sum_{n=2}^{\infty} \frac{f^{(n)}|_{z_0}}{n!} \frac{(z_1 - z_0)^n - (z_2 - z_0)^n}{z_1 - z_2} = 0.$ Finally, note that for $n \ge 2$ holds: $\lim_{\epsilon \to 0} \frac{(z_1 - z_0)^n - (z_2 - z_0)^n}{z_1 - z_2} = 0.$ (e.g. open the brackets)

As the series converges uniformly (and ϵ can be chosen arbitrarily small), we get:

$$f'|_{z_0} = -\lim_{\epsilon \to 0} \sum_{n=2}^{\infty} \frac{f^{(n)}|_{z_0}}{n!} \frac{(z_1 - z_0)^n - (z_2 - z_0)^n}{z_1 - z_2} = -\sum_{n=2}^{\infty} \lim_{\epsilon \to 0} \frac{f^{(n)}|_{z_0}}{n!} \frac{(z_1 - z_0)^n - (z_2 - z_0)^n}{z_1 - z_2} = 0.$$

Therefore f' vanishes at each point of \mathbb{C} , thus f = const.

2

<u>Remarks</u> i. In the case of real valued functions the solution is much shorter. By Lagrange's theorem, there exists $c \in \overline{[z_1, z_2]}$ satisfying $f'(c) = \frac{f(z_1) - f(z_2)}{z_1 - z_2} = 0$. Thus f' has zeros in any neighborhood of any point, thus $f' \equiv 0$. ii. Note that the condition $f(z_1) = f(z_2)$ is given for pairs of points. This does not imply any sequence $\{z_n\}$ such

that $f(z_n) = f(z_{n+1})$.