(1) Note that for $|z|<1$ we have: $1+\frac{z}{3} \notin \mathbb{R}_{<0}$, thus $\log \left(1+\frac{z}{3}\right) \in \mathcal{O}\left(D_{1}(0)\right)$.

$$
\text { Solution 1. } \oint_{|z|=1} \frac{\log \left(1+\frac{z}{3}\right)}{z^{3}} d z=\sum_{n=1}^{\infty} \oint_{|z|=1}-\frac{\left(-\frac{z}{3}\right)^{n}}{n} \frac{d z}{z^{3}}=-\frac{\pi i}{9} \text {. }
$$

Here we are allowed to change the integration and the summation because the series converges uniformly in $\overline{D_{1}(0)}$. (And the series converges uniformly in $\overline{D_{1}(0)}$, e.g. because it converges in $D_{3}(0)$.)

Solution 2. By the integral presentation of Cauchy (for derivatives) we have:

$$
\oint_{|z|=1} \frac{\log \left(1+\frac{z}{3}\right)}{z^{3}} d z=\left.\frac{2 \pi i}{2}\left(\log \left(1+\frac{z}{3}\right)\right)^{\prime \prime}\right|_{z=0}=-\left.\frac{\pi i}{9\left(1+\frac{z}{3}\right)^{2}}\right|_{z=0}=-\frac{\pi i}{9} .
$$

(2) Solution 1. The denominator vanishes at the points $0, \pm \pi$. These are the only points where f could be nonholomorphic. But the limits $\lim _{z \rightarrow 0} f(z), \lim _{z \rightarrow \pi} f(z), \lim _{z \rightarrow-\pi} f(z)$ exist and are finite. Therefore the points $0, \pm \pi$ are removable singularities, thus f extends to a holomorphic function on the whole \mathbb{C}. Thus, by Cauchy theorem, the primitive function of f exists on the whole \mathbb{C}. And in particular on $\mathbb{C} \backslash D_{10}(0)$.

Solution 2. To prove the existence of a primitive function, it is enough to check the vanishing $\oint_{\gamma} f(z) d z=0$ for any closed curve γ. The function is obviously holomorphic in $\mathbb{C} \backslash D_{10}(0)$, thus the only integral to check is $\oint_{|z|=10} \frac{\sin (z)}{z\left(z^{2}-\pi^{2}\right)} d z$. Expand the fraction: $\frac{1}{z\left(z^{2}-\pi^{2}\right)}=\frac{a}{z}+\frac{b}{z-\pi}+\frac{c}{z+\pi}$, with some coefficients $a, b, c \in \mathbb{C}$. Note: $\oint_{|z|=10} \frac{\sin (z)}{z} d z$ Cauchy $2 \pi i \cdot \sin (0)=0$. Similarly $\oint_{|z|=10} \frac{\sin (z)}{z \pm \pi} d z=\sin (\pm \pi)=0$. Thus $\oint_{|z|=10} \frac{\sin (z)}{z\left(z^{2}-\pi^{2}\right)} d z=0$. Therefore (e.g. by Morrera theorem) there exists a primitive function of f, on $\mathbb{C} \backslash D_{10}(0)$.
(3) As $f(0)=0$ but does not vanish identically, the zero of f at $z=0$ is of a finite order. Thus $f(z)=z^{k} g(z)$, for some $k \in \mathbb{N}$ and $g(z) \in \mathcal{O}(\mathbb{C})$ with $g(0) \neq 0$. Now, the holomorphic function g satisfies: $|g|_{|z|=1}=1$. Thus, by the argument of maximum, $|g(z)| \leq 1$ on $D_{1}(0)$. But g does not vanish on $D_{1}(0)$, thus $\frac{1}{g} \in \mathcal{O}\left(D_{1}(0)\right)$. Again, the argument of maximum gives: $\left|\frac{1}{g(z)}\right| \leq 1$ on $D_{1}(0)$. Therefore $|g(z)| \equiv 1$ on $D_{1}(0)$. As g is holomorphic, this implies: $g(z)=$ const on $D_{1}(0)$.

Remarks i. Many students thought that any function satisfying $|f(0)|=0,|f|_{|z|=1}=1$, must be of the form $f(z)=c z$. (" by Schwartz lemma") Some thought that just having $|f(1)|=1$ would suffice.
ii. To remind: there is no meaning to " $w<z$ " for complex numbers.
(4) f is holomorphic except possibly at the following points: $z=100$ or $\{\sin (z)=2 \pi i k\}_{k \in \mathbb{Z}}$. By the direct check:
(a) The points where $\sin (z)=0$ are removable singularities $\left(\lim _{z \rightarrow \pi n} f(z)\right.$ exists and is finite).
(b) The points where $\sin (z)=2 \pi i k \neq 0$ are (simple) poles.
(c) The point $z=100$ is an essential singularity.

Thus f extends to a holomorphic function on $\mathbb{C} \backslash\left\{100,\{\sin (z)=2 \pi i k\}_{0 \neq k \in \mathbb{Z}}\right\}$. Let z_{0} be the point among $\{\sin (z)=$ $2 \pi i k\}_{0 \neq k \in \mathbb{Z}}$ which is the closest to 2 . Then the radius of convergence is $\left|z_{0}-2\right|$.

Remark Most students overlooked the points $\{\sin (z)=2 \pi i k\}_{0 \neq k \in \mathbb{Z}}$. Those who overlooked these points, but treated carefully all the rest (identified the (non-)removable points) have lost just one point out of 20 .

To find z_{0} we consider the equation $\frac{e^{i z}-e^{-i z}}{2 i}=2 \pi k i$. Thus $\operatorname{Re}(z) \in \pi \mathbb{Z}$, while $t=\operatorname{Im}(z)$ satisfies: $\cos (\operatorname{Re}(z))\left(e^{t}-\right.$ $\left.e^{-t}\right)=4 \pi k$. As z_{0} is the closest point to 2, we have: $\operatorname{Re}\left(z_{0}\right)=\pi$, while $t=\operatorname{Im}\left(z_{0}\right)$ satisfies: $e^{t}-e^{-t}=-4 \pi$. Therefore $e^{t}=-2 \pi+\sqrt{4 \pi^{2}+1}$. Finally, the radius of convergence is: \mid it $-2 \mid$.
(5) Solution 1. As f is holomorphic, it is inifitely differentiable at each point. Thus the derivative can be computed in various ways, e.g. $f^{\prime}\left(z_{0}\right)=\lim _{\substack{z_{1}, z_{2} \rightarrow z_{0} \\ z_{1} \neq z_{2}}} \frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{z_{1}-z_{2}}$. By the assumption the expression $\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{z_{1}-z_{2}}$ vanishes at some points in any neighborhood of z_{0}. Therefore (as the limit exists) $\lim _{\substack{z_{1}, z_{2} \rightarrow z_{0} \\ z_{1} \neq z_{2}}} \frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{z_{1}-z_{2}}=0$. Thus $f^{\prime}\left(z_{0}\right)=0$ for any $z_{0} \in \mathbb{C}$.

$$
f(z)=f\left(z_{0}\right)+\left.f^{\prime}\right|_{z_{0}}\left(z-z_{0}\right)+\sum_{n=2}^{\infty}\left(z-z_{0}\right)^{n} \frac{\left.f^{(n)}\right|_{z_{0}}}{n!}
$$

Then $f\left(z_{1}\right)-f\left(z_{2}\right)=\left(z_{1}-z_{2}\right)\left(\left.f^{\prime}\right|_{z_{0}}+\sum_{n=2}^{\infty} \frac{f^{(n)} \mid z_{0}}{n!} \frac{\left(z_{1}-z_{0}\right)^{n}-\left(z_{2}-z_{0}\right)^{n}}{z_{1}-z_{2}}\right)$.
Using the assumption, for any ϵ choose $z_{1}, z_{2} \in D_{\epsilon}\left(z_{0}\right)$ such that $f\left(z_{1}\right)=f\left(z_{2}\right)$. Then we get: $\left.f^{\prime}\right|_{z_{0}}+$ $\sum_{n=2}^{\infty} \frac{f^{(n)} \mid z_{0}}{n!} \frac{\left(z_{1}-z_{0}\right)^{n}-\left(z_{2}-z_{0}\right)^{n}}{z_{1}-z_{2}}=0$.

Finally, note that for $n \geq 2$ holds: $\lim _{\epsilon \rightarrow 0} \frac{\left(z_{1}-z_{0}\right)^{n}-\left(z_{2}-z_{0}\right)^{n}}{z_{1}-z_{2}}=0$. (e.g. open the brackets)
As the series converges uniformly (and ϵ can be chosen arbitrarily small), we get:

$$
\left.f^{\prime}\right|_{z_{0}}=-\lim _{\epsilon \rightarrow 0} \sum_{n=2}^{\infty} \frac{\left.f^{(n)}\right|_{z_{0}}}{n!} \frac{\left(z_{1}-z_{0}\right)^{n}-\left(z_{2}-z_{0}\right)^{n}}{z_{1}-z_{2}}=-\sum_{n=2}^{\infty} \lim _{\epsilon \rightarrow 0} \frac{\left.f^{(n)}\right|_{z_{0}}}{n!} \frac{\left(z_{1}-z_{0}\right)^{n}-\left(z_{2}-z_{0}\right)^{n}}{z_{1}-z_{2}}=0 .
$$

Therefore f^{\prime} vanishes at each point of \mathbb{C}, thus $f=$ const.
Remarks i. In the case of real valued functions the solution is much shorter. By Lagrange's theorem, there exists $c \in\left[z_{1}, z_{2}\right]$ satisfying $f^{\prime}(c)=\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{z_{1}-z_{2}}=0$. Thus f^{\prime} has zeros in any neighborhood of any point, thus $f^{\prime} \equiv 0$.
ii. Note that the condition $f\left(z_{1}\right)=f\left(z_{2}\right)$ is given for pairs of points. This does not imply any sequence $\left\{z_{n}\right\}$ such that $f\left(z_{n}\right)=f\left(z_{n+1}\right)$.

