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(1) (This is close to problem 2 of tutorial 7, to question 5.d of hwk 6, to question 4.h of hwk 9, to question 8 of hwk 10,
to question 5 of hwk 11.)

Solution 1. Note that {f( 1
2n ) = 0}. Thus the holomorphic function f vanishes on a (infinite) sequence of points

that converges inside D1(0). Therefore, by the uniqueness principle, f(z) ≡ 0 on D1(0). But this contradicts the

condition f( 1
2n+1 ) =

(−1)n+1

2n+1 ̸= 0. Therefore the function with the prescribed conditions does not exist.

Solution 2. Suppose such a holomorphic function exists, then in particular f is continuous, thus f(0) = lim
n→∞

f( 1n ) =

0. But then f cannot be R-differentiable at 0, because lim
n→∞

|f(0)−f( 1
2n+1 )|

|0− 1
2n+1 |

= 1, while lim
n→∞

|f(0)−f( 1
2n )|

|0− 1
2n | = 0. Therefore

the function with the prescribed conditions does not exist.

(2) (This is close to problem 4 of hwk8.)
Note: f (n)|z=0 = (−1)n(n + 1)!(an + bn), for any n = 0, 1 . . . . This derivative can be computed also by Cauchy

formula: f (n)|z=0 = n!
2πi

∮
|ξ|=1

f(ξ)
ξn+1 dξ. Therefore:

(n+ 1)!|an + bn| = |f (n)|z=0| = n!
2π |

∮
|z|=1

f(ξ)
ξn+1 dξ| ≤ 3 n!

2π

∮
|z|=1

|dξ| = 3 · n!. Hence the needed inequality.

(3) (This is close to questions 1c, 1.d, 1.h. of hwk8, and question 4.d of hwk 9.)

(a) By the assumption, f(z) −→
z→0

∞ hence f has a pole at z = 0. Thus we can present f(z) = g(z)
zn , where

n = −ordz=0f , g ∈ O(C) and g(0) ̸= 0. By the assumption: |g(z)| ≥ |zn−
√
2|. Therefore g does not vanish on

C.
Note that n >

√
2, therefore g has a pole at ∞. Thus it is necessarily a polynomial (by HW 8 problem 2a). But

g has no zeroes on C, thus it must be a constant, contradicting the existence of a pole at ∞.

(Another reasoning: g has no zeros on C, and does not even approach 0, because of the condition |g(z)| ≥ |zn−
√
2|.

Therefore the image of g is not dense in C.)
(b) By the assumption, f has an isolated singular point at z = 0. The condition |f(z)| ≥ 1

|z|
√

2
implies: lim

z→0
|f(z)| =

∞. Thus f is meromorphic on C̄ and we get back to the previous case.

(4) (This is close to question 3.h hwk6, question 4.c of hwk12, and tutorials 6,12.)
By the assumption: f(z) = u(z) + i · v(z) is holomorphic in C and satisfies: −Im(f)2 ≤ Re(f) ≤ Im(f)2. This

means: the image of f lies inside the set {(x, y)| −y2 ≤ x ≤ y2}. But then the image cannot be dense in C. Therefore
f must be a constant function. And u, v as well.

(5) (Similar to hwk7, q.2.b.)
Solution 1. By the assumption f is holomorphic, thus it is continuous, thus f(0) = lim

z→0
f(z) = 0. Let C =

sup
z∈∂D1(0)

|f(z)| and define f̃(z) = f(z)
C . (Note: C ̸= 0.) Then D1(0)

f̃→ D1(0) satisfies the assumptions of Schwarz

lemma. Thus |f̃(z)| ≤ |z| for any z ∈ D1(0), with equality iff f̃(z) = C̃ · z. The condition on f( i
2 ) means

|f̃( i
2 )| =

1
2 = | i2 |, therefore f̃(z) = C̃ · z, thus f(z) = CC̃ · z. Finally: f ′(0)

f(−1) = −1.

Solution 2. First notice (as above) that f(0) = 0. Therefore the function g(z) = f(z)
z is holomorphic in D2(0). This

function satisfies: |g( i
2 )| = sup

z∈∂D1(0)

|g(z)|. Therefore, by the principle of maximum, g is a constant. Thus f(z) = Cz,

hence f ′(0)
f(−1) = −1.

(6) First note that the integral converges absolutely. (The denominator does not vanish for any t ∈ R and it decays as
1
t2 for |t| → ∞.)

Solution 1. We convert the integral to an integral over the unit circle by the change of variables t → z(t) = i−t
i+t .

(Note that | i−t
i+t | = 1 for any t ∈ R. And as t varies from −∞ to ∞, z runs counterclockwise along the circle.) We

have: t = i 1−z
1+z and dt = −2idz

(1+z)2 . Thus the integral to compute is:

∞∫
−∞

dt

(i+ t)2sin
(
i−t
i+t −

1
3

) = lim
R→∞

R∫
−R

dt

(i+ t)2sin
(
i−t
i+t −

1
3

) = lim
ϵ→0

∮
|z|=1

Arg(z)∈[−π+ϵ,π−ϵ]

−2idz

(1 + z)2sin(z − 1
3 )(

2i
1+z )

2
=

=

∮
|z|=1

−2idz

(1 + z)2sin(z − 1
3 )(

2i
1+z )

2
=

∮
|z|=1

idz

2sin(z − 1
3 )

= 2πi ·Resz= 1
3

( i

2sin(z − 1
3 )

)
= −π



2

Solution 2. Close the contour of integration by the upper semi-circle γR (that passes through the points R,Ri,−R).
We claim: lim

z→∞

∫
γR

dz

(i+z)2sin
(

i−z
i+z −

1
3

) = 0. Indeed lim
z→∞

sin
(
i−z
i+z − 1

3

)
= sin(−4

3 ). Therefore for |z| ≫ 1 one has:

|sin4
3
| − ϵ ≤ |sin

( i− z

i+ z
− 1

3

)
| ≤ |sin4

3
|+ ϵ.

Thus |
∫
γR

dz

(i+z)2sin
(

i−z
i+z −

1
3

) | ≤ C
∫
γR

| dz
(i+z)2 | ≤

2πCR
R2 , for some constant C.

Therefore:

(1)

∞∫
−∞

dt

(i+ t)2sin
(
i−t
i+t −

1
3

) = lim
R→∞

( R∫
−R

dt

(i+ t)2sin
(
i−t
i+t −

1
3

) +

∫
γR

dz

(i+ z)2sin
(
i−z
i+z − 1

3

)) =

= 2πi
∑

Im(w)>0

Resz=w(
1

(i+ z)2sin
(
i−z
i+z − 1

3

) )
Thus we should check the singularities/residues of 1

(i+z)2sin
(

i−z
i+z −

1
3

) . Note that 1
(i+z)2 is holomorphic for Im(z) > 0.

So the residues could come only from the points where sin
(
i−z
i+z − 1

3

)
= 0, i.e. i−z

i+z − 1
3 = πk, for k ∈ Z. We get then:

{z = −i− 2i
3πk+4}k∈Z. Of this infinite sequence of points, only one point lies in the upper half plane: z = i

2 . At this
point the function has just a simple pole, therefore:

∞∫
−∞

dt

(i+ t)2sin
(
i−t
i+t −

1
3

) = 2πi ·Resz= i
2
(

1

(i+ z)2sin
(
i−z
i+z − 1

3

) ) = 2πi · lim
z→ i

2

z − i
2

(i+ z)2sin
(
i−z
i+z − 1

3

) = −π.


