Partial solutions of moed.A, Comlex.Functions.EE (201.1.0071) 20.07.2017 Ben Gurion University

(1) (This is close to problem 2 of tutorial 7, to question 5.d of hwk 6, to question 4.h of hwk 9, to question 8 of hwk 10, to question 5 of hwk 11.)

<u>Solution 1.</u> Note that $\{f(\frac{1}{2n}) = 0\}$. Thus the holomorphic function f vanishes on a (infinite) sequence of points that converges inside $D_1(0)$. Therefore, by the uniqueness principle, $f(z) \equiv 0$ on $D_1(0)$. But this contradicts the condition $f(\frac{1}{2n+1}) = \frac{(-1)^{n+1}}{2n+1} \neq 0$. Therefore the function with the prescribed conditions does not exist.

<u>Solution 2.</u> Suppose such a holomorphic function exists, then in particular f is continuous, thus $f(0) = \lim_{n \to \infty} f(\frac{1}{n}) = 0$. But then f cannot be \mathbb{R} -differentiable at 0, because $\lim_{n \to \infty} \frac{|f(0) - f(\frac{1}{2n+1})|}{|0 - \frac{1}{2n+1}|} = 1$, while $\lim_{n \to \infty} \frac{|f(0) - f(\frac{1}{2n})|}{|0 - \frac{1}{2n}|} = 0$. Therefore the function with the prescribed conditions does not exist.

(2) (This is close to problem 4 of hwk8.)

Note: $f^{(n)}|_{z=0} = (-1)^n (n+1)! (a^n + b^n)$, for any n = 0, 1... This derivative can be computed also by Cauchy formula: $f^{(n)}|_{z=0} = \frac{n!}{2\pi i} \oint_{\substack{|\xi|=1}} \frac{f(\xi)}{\xi^{n+1}} d\xi$. Therefore:

$$(n+1)!|a^n + b^n| = |f^{(n)}|_{z=0}| = \frac{n!}{2\pi} |\oint_{|z|=1} \frac{f(\xi)}{\xi^{n+1}} d\xi| \le 3\frac{n!}{2\pi} \oint_{|z|=1} |d\xi| = 3 \cdot n!.$$
 Hence the needed inequality.

(3) (This is close to questions 1c, 1.d, 1.h. of hwk8, and question 4.d of hwk 9.)

(a) By the assumption, $f(z) \xrightarrow[z \to 0]{} \infty$ hence f has a pole at z = 0. Thus we can present $f(z) = \frac{g(z)}{z^n}$, where $n = -ord_{z=0}f$, $g \in \mathcal{O}(\mathbb{C})$ and $g(0) \neq 0$. By the assumption: $|g(z)| \geq |z^{n-\sqrt{2}}|$. Therefore g does not vanish on \mathbb{C} . Note that $n > \sqrt{2}$, therefore g has a pole at ∞ . Thus it is necessarily a polynomial (by HW 8 problem 2a). But g has no zeroes on \mathbb{C} , thus it must be a constant, contradicting the existence of a pole at ∞ .

(Another reasoning: g has no zeros on \mathbb{C} , and does not even approach 0, because of the condition $|g(z)| \ge |z^{n-\sqrt{2}}|$. Therefore the image of g is not dense in \mathbb{C} .)

- (b) By the assumption, f has an isolated singular point at z = 0. The condition $|f(z)| \ge \frac{1}{|z|^{\sqrt{2}}}$ implies: $\lim_{z \to 0} |f(z)| = \infty$. Thus f is meromorphic on $\overline{\mathbb{C}}$ and we get back to the previous case.
- (4) (This is close to question 3.h hwk6, question 4.c of hwk12, and tutorials 6,12.)

By the assumption: $f(z) = u(z) + i \cdot v(z)$ is holomorphic in \mathbb{C} and satisfies: $-Im(f)^2 \leq Re(f) \leq Im(f)^2$. This means: the image of f lies inside the set $\{(x, y) | -y^2 \leq x \leq y^2\}$. But then the image cannot be dense in \mathbb{C} . Therefore f must be a constant function. And u, v as well.

(5) (Similar to hwk7, q.2.b.)

Solution 1. By the assumption f is holomorphic, thus it is continuous, thus $f(0) = \lim_{z \to 0} f(z) = 0$. Let $C = \sup_{z \in \partial D_1(0)} |f(z)|$ and define $\tilde{f}(z) = \frac{f(z)}{C}$. (Note: $C \neq 0$.) Then $D_1(0) \stackrel{\tilde{f}}{\to} D_1(0)$ satisfies the assumptions of Schwarz lemma. Thus $|\tilde{f}(z)| \leq |z|$ for any $z \in D_1(0)$, with equality iff $\tilde{f}(z) = \tilde{C} \cdot z$. The condition on $f(\frac{i}{2})$ means $|\tilde{f}(\frac{i}{2})| = \frac{1}{2} = |\frac{i}{2}|$, therefore $\tilde{f}(z) = \tilde{C} \cdot z$, thus $f(z) = C\tilde{C} \cdot z$. Finally: $\frac{f'(0)}{f(-1)} = -1$.

<u>Solution 2.</u> First notice (as above) that f(0) = 0. Therefore the function $g(z) = \frac{f(z)}{z}$ is holomorphic in $D_2(0)$. This function satisfies: $|g(\frac{i}{2})| = \sup_{z \in \partial D_1(0)} |g(z)|$. Therefore, by the principle of maximum, g is a constant. Thus f(z) = Cz,

hence
$$\frac{f'(0)}{f(-1)} = -1.$$

(6) First note that the integral converges absolutely. (The denominator does not vanish for any $t \in \mathbb{R}$ and it decays as $\frac{1}{t^2}$ for $|t| \to \infty$.)

<u>Solution 1.</u> We convert the integral to an integral over the unit circle by the change of variables $t \to z(t) = \frac{i-t}{i+t}$. (Note that $|\frac{i-t}{i+t}| = 1$ for any $t \in \mathbb{R}$. And as t varies from $-\infty$ to ∞ , z runs counterclockwise along the circle.) We have: $t = i\frac{1-z}{1+z}$ and $dt = \frac{-2idz}{(1+z)^2}$. Thus the integral to compute is:

$$\int_{-\infty}^{\infty} \frac{dt}{(i+t)^2 sin\left(\frac{i-t}{i+t} - \frac{1}{3}\right)} = \lim_{R \to \infty} \int_{-R}^{R} \frac{dt}{(i+t)^2 sin\left(\frac{i-t}{i+t} - \frac{1}{3}\right)} = \lim_{\epsilon \to 0} \oint_{\substack{|z|=1\\Arg(z) \in [-\pi+\epsilon,\pi-\epsilon]}} \frac{-2idz}{(1+z)^2 sin(z-\frac{1}{3})(\frac{2i}{1+z})^2} = \int_{|z|=1}^{R} \frac{idz}{2sin(z-\frac{1}{3})} = 2\pi i \cdot \operatorname{Res}_{z=\frac{1}{3}} \left(\frac{i}{2sin(z-\frac{1}{3})}\right) = -\pi$$

 $\frac{Solution \ 2}{2} \text{ Close the contour of integration by the upper semi-circle } \gamma_R \text{ (that passes through the points } R, Ri, -R).$ We claim: $\lim_{z \to \infty} \int_{\gamma_R} \frac{dz}{(i+z)^2 sin\left(\frac{i-z}{i+z} - \frac{1}{3}\right)} = 0.$ Indeed $\lim_{z \to \infty} sin\left(\frac{i-z}{i+z} - \frac{1}{3}\right) = sin(-\frac{4}{3}).$ Therefore for $|z| \gg 1$ one has: $|sin\frac{4}{3}| - \epsilon \le |sin\left(\frac{i-z}{i+z} - \frac{1}{3}\right)| \le |sin\frac{4}{3}| + \epsilon.$

 $|\operatorname{sun}_{\overline{3}}| - \epsilon \leq |\operatorname{sin}(\frac{z}{i+z} - \frac{1}{3})| \leq |\operatorname{sin}\frac{4}{3}| + \operatorname{Thus} |\int_{\gamma_R} \frac{dz}{(i+z)^2 \sin\left(\frac{i-z}{i+z} - \frac{1}{3}\right)}| \leq C \int_{\gamma_R} |\frac{dz}{(i+z)^2}| \leq \frac{2\pi CR}{R^2}, \text{ for some constant } C.$ Therefore:

 $\mathbf{2}$

$$(1) \quad \int_{-\infty}^{\infty} \frac{dt}{(i+t)^2 \sin\left(\frac{i-t}{i+t} - \frac{1}{3}\right)} = \lim_{R \to \infty} \left(\int_{-R}^{R} \frac{dt}{(i+t)^2 \sin\left(\frac{i-t}{i+t} - \frac{1}{3}\right)} + \int_{\gamma_R} \frac{dz}{(i+z)^2 \sin\left(\frac{i-z}{i+z} - \frac{1}{3}\right)} \right) = 2\pi i \sum_{Im(w)>0} \operatorname{Res}_{z=w}\left(\frac{1}{(i+z)^2 \sin\left(\frac{i-z}{i+z} - \frac{1}{3}\right)}\right)$$

Thus we should check the singularities/residues of $\frac{1}{(i+z)^2 \sin\left(\frac{i-z}{i+z}-\frac{1}{3}\right)}$. Note that $\frac{1}{(i+z)^2}$ is holomorphic for Im(z) > 0. So the residues could come only from the points where $\sin\left(\frac{i-z}{i+z}-\frac{1}{3}\right) = 0$, i.e. $\frac{i-z}{i+z}-\frac{1}{3} = \pi k$, for $k \in \mathbb{Z}$. We get then: $\{z = -i - \frac{2i}{3\pi k + 4}\}_{k \in \mathbb{Z}}$. Of this infinite sequence of points, only one point lies in the upper half plane: $z = \frac{i}{2}$. At this point the function has just a simple pole, therefore:

$$\int_{-\infty}^{\infty} \frac{dt}{(i+t)^2 \sin\left(\frac{i-t}{i+t} - \frac{1}{3}\right)} = 2\pi i \cdot \operatorname{Res}_{z=\frac{i}{2}}\left(\frac{1}{(i+z)^2 \sin\left(\frac{i-z}{i+z} - \frac{1}{3}\right)}\right) = 2\pi i \cdot \lim_{z \to \frac{i}{2}} \frac{z - \frac{i}{2}}{(i+z)^2 \sin\left(\frac{i-z}{i+z} - \frac{1}{3}\right)} = -\pi.$$