Partial solutions of moed.A, Comlex.Functions.EE
 (201.1.0071) 20.07.2017 Ben Gurion University

(1) (This is close to problem 2 of tutorial 7 , to question 5 .d of hwk 6 , to question 4 .h of hwk 9 , to question 8 of hwk 10 , to question 5 of hwk 11.)

Solution 1. Note that $\left\{f\left(\frac{1}{2 n}\right)=0\right\}$. Thus the holomorphic function f vanishes on a (infinite) sequence of points that converges inside $D_{1}(0)$. Therefore, by the uniqueness principle, $f(z) \equiv 0$ on $D_{1}(0)$. But this contradicts the condition $f\left(\frac{1}{2 n+1}\right)=\frac{(-1)^{n+1}}{2 n+1} \neq 0$. Therefore the function with the prescribed conditions does not exist.

Solution 2. Suppose such a holomorphic function exists, then in particular f is continuous, thus $f(0)=\lim _{n \rightarrow \infty} f\left(\frac{1}{n}\right)=$ 0. But then f cannot be \mathbb{R}-differentiable at 0 , because $\lim _{n \rightarrow \infty} \frac{\left|f(0)-f\left(\frac{1}{2 n+1}\right)\right|}{\left|0-\frac{1}{2 n+1}\right|}=1$, while $\lim _{n \rightarrow \infty} \frac{\left|f(0)-f\left(\frac{1}{2 n}\right)\right|}{\left|0-\frac{1}{2 n}\right|}=0$. Therefore the function with the prescribed conditions does not exist.
(2) (This is close to problem 4 of hwk8.)

Note: $\left.f^{(n)}\right|_{z=0}=(-1)^{n}(n+1)!\left(a^{n}+b^{n}\right)$, for any $n=0,1 \ldots$ This derivative can be computed also by Cauchy formula: $\left.f^{(n)}\right|_{z=0}=\frac{n!}{2 \pi i} \oint_{|\xi|=1} \frac{f(\xi)}{\xi^{n+1}} d \xi$. Therefore:
$\left.(n+1)!\left|a^{n}+b^{n}\right|=\left|f^{(n)}\right|_{z=0}\left|=\frac{n!}{2 \pi}\right| \oint_{|z|=1} \frac{f(\xi)}{\xi^{n+1}} d \xi\left|\leq 3 \frac{n!}{2 \pi} \oint_{|z|=1}\right| d \xi \right\rvert\,=3 \cdot n!$. Hence the needed inequality.
(3) (This is close to questions 1c, 1.d, 1.h. of hwk8, and question 4.d of hwk 9.)
(a) By the assumption, $f(z) \underset{z \rightarrow 0}{\longrightarrow} \infty$ hence f has a pole at $z=0$. Thus we can present $f(z)=\frac{g(z)}{z^{n}}$, where $n=-\operatorname{ord}_{z=0} f, g \in \mathcal{O}(\mathbb{C})$ and $g(0) \neq 0$. By the assumption: $|g(z)| \geq\left|z^{n-\sqrt{2}}\right|$. Therefore g does not vanish on \mathbb{C}.
Note that $n>\sqrt{2}$, therefore g has a pole at ∞. Thus it is necessarily a polynomial (by HW 8 problem 2a). But g has no zeroes on \mathbb{C}, thus it must be a constant, contradicting the existence of a pole at ∞.
(Another reasoning: g has no zeros on \mathbb{C}, and does not even approach 0 , because of the condition $|g(z)| \geq\left|z^{n-\sqrt{2}}\right|$. Therefore the image of g is not dense in \mathbb{C}.)
(b) By the assumption, f has an isolated singular point at $z=0$. The condition $|f(z)| \geq \frac{1}{|z|^{\sqrt{2}}}$ implies: $\lim _{z \rightarrow 0}|f(z)|=$ ∞. Thus f is meromorphic on $\overline{\mathbb{C}}$ and we get back to the previous case.
(4) (This is close to question 3.h hwk6, question 4.c of hwk12, and tutorials 6,12 .)

By the assumption: $f(z)=u(z)+i \cdot v(z)$ is holomorphic in \mathbb{C} and satisfies: $-\operatorname{Im}(f)^{2} \leq \operatorname{Re}(f) \leq \operatorname{Im}(f)^{2}$. This means: the image of f lies inside the set $\left\{(x, y) \mid-y^{2} \leq x \leq y^{2}\right\}$. But then the image cannot be dense in \mathbb{C}. Therefore f must be a constant function. And u, v as well.
(5) (Similar to hwk7, q.2.b.)

Solution 1. By the assumption f is holomorphic, thus it is continuous, thus $f(0)=\lim _{z \rightarrow 0} f(z)=0$. Let $C=$ $\sup _{z \in \partial D_{1}(0)}|f(z)|$ and define $\tilde{f}(z)=\frac{f(z)}{C}$. (Note: $C \neq 0$.) Then $D_{1}(0) \xrightarrow{\tilde{f}} D_{1}(0)$ satisfies the assumptions of Schwarz lemma. Thus $|\tilde{f}(z)| \leq|z|$ for any $z \in D_{1}(0)$, with equality iff $\tilde{f}(z)=\tilde{C} \cdot z$. The condition on $f\left(\frac{i}{2}\right)$ means $\left|\tilde{f}\left(\frac{i}{2}\right)\right|=\frac{1}{2}=\left|\frac{i}{2}\right|$, therefore $\tilde{f}(z)=\tilde{C} \cdot z$, thus $f(z)=C \tilde{C} \cdot z$. Finally: $\frac{f^{\prime}(0)}{f(-1)}=-1$.
Solution 2. First notice (as above) that $f(0)=0$. Therefore the function $g(z)=\frac{f(z)}{z}$ is holomorphic in $D_{2}(0)$. This function satisfies: $\left|g\left(\frac{i}{2}\right)\right|=\sup _{z \in \partial D_{1}(0)}|g(z)|$. Therefore, by the principle of maximum, g is a constant. Thus $f(z)=C z$, hence $\frac{f^{\prime}(0)}{f(-1)}=-1$.
(6) First note that the integral converges absolutely. (The denominator does not vanish for any $t \in \mathbb{R}$ and it decays as $\frac{1}{t^{2}}$ for $|t| \rightarrow \infty$.)
Solution 1. We convert the integral to an integral over the unit circle by the change of variables $t \rightarrow z(t)=\frac{i-t}{i+t}$. (Note that $\left|\frac{i-t}{i+t}\right|=1$ for any $t \in \mathbb{R}$. And as t varies from $-\infty$ to ∞, z runs counterclockwise along the circle.) We have: $t=i \frac{1-z}{1+z}$ and $d t=\frac{-2 i d z}{(1+z)^{2}}$. Thus the integral to compute is:

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{d t}{(i+t)^{2} \sin \left(\frac{i-t}{i+t}-\frac{1}{3}\right)}=\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{d t}{(i+t)^{2} \sin \left(\frac{i-t}{i+t}-\frac{1}{3}\right)}=\lim _{\epsilon \rightarrow 0} \oint_{\substack{|z|=1 \\
\operatorname{Arg}(z) \in[-\pi+\epsilon, \pi-\epsilon]}} \frac{-2 i d z}{(1+z)^{2} \sin \left(z-\frac{1}{3}\right)\left(\frac{2 i}{1+z}\right)^{2}}= \\
=\oint_{|z|=1} \frac{-2 i d z}{(1+z)^{2} \sin \left(z-\frac{1}{3}\right)\left(\frac{2 i}{1+z}\right)^{2}}=\oint_{|z|=1} \frac{i d z}{2 \sin \left(z-\frac{1}{3}\right)}=2 \pi i \cdot \operatorname{Res}_{z=\frac{1}{3}}\left(\frac{i}{2 \sin \left(z-\frac{1}{3}\right)}\right)=-\pi
\end{gathered}
$$

Solution 2. Close the contour of integration by the upper semi-circle γ_{R} (that passes through the points $R, R i,-R$).
We claim: $\lim _{z \rightarrow \infty} \int_{\gamma_{R}} \frac{d z}{(i+z)^{2} \sin \left(\frac{i-z}{i+z}-\frac{1}{3}\right)}=0$. Indeed $\lim _{z \rightarrow \infty} \sin \left(\frac{i-z}{i+z}-\frac{1}{3}\right)=\sin \left(-\frac{4}{3}\right)$. Therefore for $|z| \gg 1$ one has:

$$
\left|\sin \frac{4}{3}\right|-\epsilon \leq\left|\sin \left(\frac{i-z}{i+z}-\frac{1}{3}\right)\right| \leq\left|\sin \frac{4}{3}\right|+\epsilon
$$

Thus $\left|\int_{\gamma_{R}} \frac{d z}{(i+z)^{2} \sin \left(\frac{i-z}{i+z}-\frac{1}{3}\right)}\right| \leq C \int_{\gamma_{R}}\left|\frac{d z}{(i+z)^{2}}\right| \leq \frac{2 \pi C R}{R^{2}}$, for some constant C.
Therefore:
(1)

$$
\begin{array}{r}
\int_{-\infty}^{\infty} \frac{d t}{(i+t)^{2} \sin \left(\frac{i-t}{i+t}-\frac{1}{3}\right)}=\lim _{R \rightarrow \infty}\left(\int_{-R}^{R} \frac{d t}{(i+t)^{2} \sin \left(\frac{i-t}{i+t}-\frac{1}{3}\right)}+\int_{\gamma_{R}} \frac{d z}{(i+z)^{2} \sin \left(\frac{i-z}{i+z}-\frac{1}{3}\right)}\right)= \\
=2 \pi i \sum_{\operatorname{Im}(w)>0} \operatorname{Res}_{z=w}\left(\frac{1}{(i+z)^{2} \sin \left(\frac{i-z}{i+z}-\frac{1}{3}\right)}\right)
\end{array}
$$

Thus we should check the singularities/residues of $\frac{1}{(i+z)^{2} \sin \left(\frac{i-z}{i+z}-\frac{1}{3}\right)}$. Note that $\frac{1}{(i+z)^{2}}$ is holomorphic for $\operatorname{Im}(z)>0$. So the residues could come only from the points where $\sin \left(\frac{i-z}{i+z}-\frac{1}{3}\right)=0$, i.e. $\frac{i-z}{i+z}-\frac{1}{3}=\pi k$, for $k \in \mathbb{Z}$. We get then: $\left\{z=-i-\frac{2 i}{3 \pi k+4}\right\}_{k \in \mathbb{Z}}$. Of this infinite sequence of points, only one point lies in the upper half plane: $z=\frac{i}{2}$. At this point the function has just a simple pole, therefore:

$$
\int_{-\infty}^{\infty} \frac{d t}{(i+t)^{2} \sin \left(\frac{i-t}{i+t}-\frac{1}{3}\right)}=2 \pi i \cdot \operatorname{Res}_{z=\frac{i}{2}}\left(\frac{1}{(i+z)^{2} \sin \left(\frac{i-z}{i+z}-\frac{1}{3}\right)}\right)=2 \pi i \cdot \lim _{z \rightarrow \frac{i}{2}} \frac{z-\frac{i}{2}}{(i+z)^{2} \sin \left(\frac{i-z}{i+z}-\frac{1}{3}\right)}=-\pi
$$

