Partial solutions of moed.B, Complex.Functions.EE
(201.1.0071) 10.08.2017 Ben Gurion University

(1) Note that $|f(z)|=\sqrt{\operatorname{Re}(f(z))^{2}+\operatorname{Im}(f(z))^{2}}$, therefore the condition $|f(z)| \leq|\operatorname{Re}(f(z))|$ implies: $\operatorname{Im}(f(z)) \equiv 0$ for any $z \in \mathbb{C}$. But then f must be constant. (e.g. by Cauchy-Riemann equations, or because the image of non-constant entire function must be dense in \mathbb{C}, or by the open mapping theorem.)
(2) If $f^{2016} \equiv 0$ then $f \equiv 0$, in particular f is holomorphic. Assume f^{2016} does not vanish identically, then (by holomorphicity) its zeros are isolated.

The function $\frac{f^{2017}}{f^{2016}}$ is defined (and is holomorphic) outside of the set of zeros of f^{2016}. Near each zero of f^{2016}, i.e. $f^{2016}\left(z_{0}\right)=0$, the function $\frac{f^{2017}}{f^{2016}}$ has an isolated singular point. This point is of "removable" type, because $\lim _{z \rightarrow z_{0}} \frac{f^{2017}(z)}{f^{2016}(z)}=0$. Thus the function $\frac{f^{2017}}{f^{2016}}$ extends to a holomorphic function defined on the whole $D_{1}(0)$, and it is precisely f. Thus $f \in \mathcal{O}\left(D_{1}(0)\right)$.
(3) Solution 1. Recall the minimum principle (see the lectures and the homeworks):

1. If $g \in \mathcal{O}(\overline{\mathcal{U}})$ does not vanish at any point of \mathcal{U} then $\inf _{z \in \overline{\mathcal{U}}}|g|$ is achieved on the boundary.
2. If this infimum is achieved at some inner point then the function is constant.

In our case the function e^{f} is holomorphic and does not vanish anywhere in \mathbb{C}. For any two numbers $r<R$, the points of the circle $|z|=r$ are the inner points for the disc $D_{R}(0)$. Thus we have the strict inequality.

Solution 2. Note that $\inf \left|e^{f(z)}\right|=\frac{1}{\sup \left|e^{-f(z)}\right|}$. Therefore, instead of proving $\inf _{|z|=r}\left|e^{f(z)}\right|>\inf _{|z|=R}\left|e^{f(z)}\right|$, it is enough to prove: $\sup _{|z|=r}\left|e^{-f(z)}\right|<\sup _{|z|=R}\left|e^{-f(z)}\right|$. But the later follows immediately from the maximum principle for the (non-constant) holomorphic function $e^{-f(z)}$.
 the (real-valued) function e^{x} is strictly increasing, it is enough to prove: $\inf _{|z|=r} u(z)>\inf _{|z|=R} u(z)$. But this follows immediately by the minimum principle for the (non-constant) harmonic function $u \in \operatorname{Har}(\mathbb{C})$.

Note: The function $e^{u(z)}$ is not necessarily harmonic, and the minimum principle does not hold for it.
(4) (Part b.) We want to use Rouché's theorem.

Note that $\left|e^{z}\right|<1$ for $\operatorname{Re}(z)<0$, thus $\left|e^{z}-1\right|<2$ in the whole \mathcal{U}. It remains to bound the right hand side, $\left|z^{3}+7 z^{2}\right|=\left|z^{2}(z+7)\right|$.

Note that for any point $z \in \partial \mathcal{U}$ holds: $\left|z^{2}\right| \geq 25$. In addition, $|z+7| \geq 2$, here 2 is the distance from the point (-7) to the boundary $\partial \mathcal{U}$. Thus $\left|z^{3}+7 z^{2}\right| \geq 50$.

Therefore $\left|z^{3}+7 z\right|>\left|e^{z}-1\right|$ on $\partial \mathcal{U}$. Thus, by Rouché theorem, the equations $z^{2}(z+7)=0$ and $z^{2}(z+7)=e^{z}-1$ have the same number of solutions in \mathcal{U}. The equation $z^{2}(z+7)=0$ has just one solution in \mathcal{U}. Thus the equation $z^{2}(z+7)=e^{z}-1$ has precisely one solution in \mathcal{U}.
(5) Solution 1. Recall the Cauchy formula (for z_{0} inside γ): $f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(z) d z}{\left(z-z_{0}\right)}$. From here one gets, by differentiation: $f^{(n-1)}\left(z_{0}\right)=\frac{(n-1)!}{2 \pi i} \oint_{\gamma} \frac{f(z) d z}{\left(z-z_{0}\right)^{n}}$. On the other hand, Cauchy formula for $f^{(n-1)}$ is: $f^{(n-1)}\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{f^{(n-1)}(z) d z}{\left(z-z_{0}\right)}$. Thus we get: $\oint_{\gamma} \frac{f(z) d z}{\left(z-z_{0}\right)^{n}}=\frac{1}{(n-1)!} \oint_{\gamma} \frac{f^{(n-1)}(z) d z}{z-z_{0}}$.

If the point z_{0} does not lie inside the path γ, then both parts vanish.
Solution 2. We are to prove: $\oint_{\gamma}\left(\frac{f(z) d z}{\left(z-z_{0}\right)^{n}}-\frac{1}{(n-1)!} \frac{f^{(n-1)}(z) d z}{z-z_{0}}\right)=0$, i.e. $\oint_{\gamma} \frac{f(z)-\frac{f^{(n-1)}(z)}{(n-1)!}\left(z-z_{0}\right)^{n-1}}{\left(z-z_{0}\right)^{n}} d z=0$. Expand the numerator at the point $z_{0}: f(z)-\frac{f^{(n-1)}(z)}{(n-1)!}\left(z-z_{0}\right)^{n-1}=\sum_{k \geq 0} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k}-\frac{1}{(n-1)!} \sum_{k \geq 0} \frac{f^{(k+n-1)}\left(z_{0}\right)\left(z-z_{0}\right)^{k+n-1}}{k!}$.

To compute the integral we need the coefficient of $\left(z-z_{0}\right)^{n-1}$ in this series. And this coefficient vanishes.
Solution 3. Replace the contour γ by a small circle around z_{0}, and compute the residues.
(6) Note that the integral converges absolutely.

It is natural to close the integration path by a (upper or lower) semi-circle, denote the later by C_{R}. This reduces the integral to the residues of the function at all its poles.

Note that the poles are at the points $\{z=\pi k+i\}_{k \in \mathbb{Z}}$, and these all lie in the upper half-plane. Thus, if we close the path by the upper semi-circle, we will have to sum an infinite series of residues. Therefore it is simpler to close by the lower semi-circle, $C_{R}=\left\{R \cdot e^{-i \cdot \theta}, \theta \in[0, \pi]\right\}$, here there are no residues at all.

We claim: $\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{d z}{(z-i)^{2} \sin (z-i)}=0$. Indeed, $\sin (z-i)$ does not approach zero on C_{R} and one has:

$$
\left|\int_{C_{R}} \frac{d z}{(z-i)^{2} \sin (z-i)}\right| \leq C \cdot \int_{C_{R}} \frac{|d z|}{R^{2}} \leq \frac{\pi C}{R} \underset{R \rightarrow \infty}{\longrightarrow} 0
$$

Thus, as there are no poles in the lower half-plane, we get: $\int_{-\infty}^{\infty} \frac{d t}{(t-i)^{2} \sin (t-i)}=0$.

