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(1) Note that |f(z)| =
√
Re(f(z))2 + Im(f(z))2, therefore the condition |f(z)| ≤ |Re(f(z))| implies: Im(f(z)) ≡ 0 for

any z ∈ C. But then f must be constant. (e.g. by Cauchy-Riemann equations, or because the image of non-constant
entire function must be dense in C, or by the open mapping theorem.)

(2) If f2016 ≡ 0 then f ≡ 0, in particular f is holomorphic. Assume f2016 does not vanish identically, then (by
holomorphicity) its zeros are isolated.

The function f2017

f2016 is defined (and is holomorphic) outside of the set of zeros of f2016. Near each zero of f2016,

i.e. f2016(z0) = 0, the function f2017

f2016 has an isolated singular point. This point is of ”removable” type, because

lim
z→z0

f2017(z)
f2016(z) = 0. Thus the function f2017

f2016 extends to a holomorphic function defined on the whole D1(0), and it is

precisely f . Thus f ∈ O(D1(0)).

(3) Solution 1. Recall the minimum principle (see the lectures and the homeworks):
1. If g ∈ O(U) does not vanish at any point of U then inf

z∈U
|g| is achieved on the boundary.

2. If this infimum is achieved at some inner point then the function is constant.

In our case the function ef is holomorphic and does not vanish anywhere in C. For any two numbers r < R, the
points of the circle |z| = r are the inner points for the disc DR(0). Thus we have the strict inequality.

Solution 2. Note that inf |ef(z)| = 1
sup |e−f(z)| . Therefore, instead of proving inf

|z|=r
|ef(z)| > inf

|z|=R
|ef(z)|, it is enough

to prove: sup
|z|=r

|e−f(z)| < sup
|z|=R

|e−f(z)|. But the later follows immediately from the maximum principle for the

(non-constant) holomorphic function e−f(z).

Solution 3. Present f = u + iv, note that |ef(z)| = eu(z). Therefore we should prove: inf
|z|=r

eu(z) > inf
|z|=R

eu(z). As

the (real-valued) function ex is strictly increasing, it is enough to prove: inf
|z|=r

u(z) > inf
|z|=R

u(z). But this follows

immediately by the minimum principle for the (non-constant) harmonic function u ∈ Har(C).

Note: The function eu(z) is not necessarily harmonic, and the minimum principle does not hold for it.

(4) (Part b.) We want to use Rouché’s theorem.
Note that |ez| < 1 for Re(z) < 0, thus |ez − 1| < 2 in the whole U . It remains to bound the right hand side,

|z3 + 7z2| = |z2(z + 7)|.
Note that for any point z ∈ ∂U holds: |z2| ≥ 25. In addition, |z + 7| ≥ 2, here 2 is the distance from the point

(−7) to the boundary ∂U . Thus |z3 + 7z2| ≥ 50.
Therefore |z3+7z| > |ez −1| on ∂U . Thus, by Rouché theorem, the equations z2(z+7) = 0 and z2(z+7) = ez −1

have the same number of solutions in U . The equation z2(z + 7) = 0 has just one solution in U . Thus the equation
z2(z + 7) = ez − 1 has precisely one solution in U .

(5) Solution 1. Recall the Cauchy formula (for z0 inside γ): f(z0) =
1

2πi

∮
γ

f(z)dz
(z−z0)

. From here one gets, by differentiation:

f (n−1)(z0) =
(n−1)!
2πi

∮
γ

f(z)dz
(z−z0)n

. On the other hand, Cauchy formula for f (n−1) is: f (n−1)(z0) =
1

2πi

∮
γ

f(n−1)(z)dz
(z−z0)

. Thus

we get:
∮
γ

f(z)dz
(z−z0)n

= 1
(n−1)!

∮
γ

f(n−1)(z)dz
z−z0

.

If the point z0 does not lie inside the path γ, then both parts vanish.

Solution 2. We are to prove:
∮
γ

(
f(z)dz
(z−z0)n

− 1
(n−1)!

f(n−1)(z)dz
z−z0

)
= 0, i.e.

∮
γ

f(z)− f(n−1)(z)
(n−1)!

(z−z0)
n−1

(z−z0)n
dz = 0. Expand the

numerator at the point z0: f(z)− f(n−1)(z)
(n−1)! (z − z0)

n−1 =
∑
k≥0

f(k)(z0)
k! (z − z0)

k − 1
(n−1)!

∑
k≥0

f(k+n−1)(z0)(z−z0)
k+n−1

k! .
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To compute the integral we need the coefficient of (z − z0)
n−1 in this series. And this coefficient vanishes.

Solution 3. Replace the contour γ by a small circle around z0, and compute the residues.

(6) Note that the integral converges absolutely.
It is natural to close the integration path by a (upper or lower) semi-circle, denote the later by CR. This reduces

the integral to the residues of the function at all its poles.
Note that the poles are at the points {z = πk + i}k∈Z, and these all lie in the upper half-plane. Thus, if we close

the path by the upper semi-circle, we will have to sum an infinite series of residues. Therefore it is simpler to close
by the lower semi-circle, CR = {R · e−i·θ, θ ∈ [0, π]}, here there are no residues at all.

We claim: lim
R→∞

∫
CR

dz
(z−i)2sin(z−i) = 0. Indeed, sin(z − i) does not approach zero on CR and one has:

|
∫
CR

dz

(z − i)2sin(z − i)
| ≤ C ·

∫
CR

|dz|
R2

≤ πC

R
−→
R→∞

0.

Thus, as there are no poles in the lower half-plane, we get:
∞∫

−∞

dt
(t−i)2sin(t−i) = 0.


