- (1) Note that $|f(z)| = \sqrt{Re(f(z))^2 + Im(f(z))^2}$, therefore the condition $|f(z)| \le |Re(f(z))|$ implies: $Im(f(z)) \equiv 0$ for any $z \in \mathbb{C}$. But then f must be constant. (e.g. by Cauchy-Riemann equations, or because the image of non-constant entire function must be dense in \mathbb{C} , or by the open mapping theorem.)
- (2) If $f^{2016} \equiv 0$ then $f \equiv 0$, in particular f is holomorphic. Assume f^{2016} does not vanish identically, then (by holomorphicity) its zeros are isolated.

The function $\frac{f^{2017}}{f^{2016}}$ is defined (and is holomorphic) outside of the set of zeros of f^{2016} . Near each zero of f^{2016} , i.e. $f^{2016}(z_0) = 0$, the function $\frac{f^{2017}}{f^{2016}}$ has an isolated singular point. This point is of "removable" type, because $\lim_{z \to z_0} \frac{f^{2017}(z)}{f^{2016}(z)} = 0$. Thus the function $\frac{f^{2017}}{f^{2016}}$ extends to a holomorphic function defined on the whole $D_1(0)$, and it is precisely f. Thus $f \in \mathcal{O}(D_1(0))$.

- (3) <u>Solution 1.</u> Recall the minimum principle (see the lectures and the homeworks):
 - 1. If $g \in \mathcal{O}(\overline{\mathcal{U}})$ does not vanish at any point of \mathcal{U} then $\inf_{z \in \overline{\mathcal{U}}} |g|$ is achieved on the boundary.
 - 2. If this infimum is achieved at some inner point then the function is constant.

In our case the function e^f is holomorphic and does not vanish anywhere in \mathbb{C} . For any two numbers r < R, the points of the circle |z| = r are the inner points for the disc $D_R(0)$. Thus we have the strict inequality.

<u>Solution 2.</u> Note that $\inf |e^{f(z)}| = \frac{1}{\sup |e^{-f(z)}|}$. Therefore, instead of proving $\inf_{|z|=r} |e^{f(z)}| > \inf_{|z|=R} |e^{f(z)}|$, it is enough to prove: $\sup_{|z|=r} |e^{-f(z)}| < \sup_{|z|=R} |e^{-f(z)}|$. But the later follows immediately from the maximum principle for the (non-constant) holomorphic function $e^{-f(z)}$.

<u>Solution 3.</u> Present f = u + iv, note that $|e^{f(z)}| = e^{u(z)}$. Therefore we should prove: $\inf_{\substack{|z|=r}} e^{u(z)} > \inf_{\substack{|z|=R}} e^{u(z)}$. As the (real-valued) function e^x is strictly increasing, it is enough to prove: $\inf_{\substack{|z|=r}} u(z) > \inf_{\substack{|z|=R}} u(z)$. But this follows immediately by the minimum principle for the (non-constant) harmonic function $u \in Har(\mathbb{C})$.

Note: The function $e^{u(z)}$ is not necessarily harmonic, and the minimum principle does not hold for it.

- (4) (Part b.) We want to use Rouché's theorem.
 - Note that $|e^z| < 1$ for Re(z) < 0, thus $|e^z 1| < 2$ in the whole \mathcal{U} . It remains to bound the right hand side, $|z^3 + 7z^2| = |z^2(z+7)|$.

Note that for any point $z \in \partial \mathcal{U}$ holds: $|z^2| \ge 25$. In addition, $|z+7| \ge 2$, here 2 is the distance from the point (-7) to the boundary $\partial \mathcal{U}$. Thus $|z^3 + 7z^2| \ge 50$.

Therefore $|z^3 + 7z| > |e^z - 1|$ on $\partial \mathcal{U}$. Thus, by Rouché theorem, the equations $z^2(z+7) = 0$ and $z^2(z+7) = e^z - 1$ have the same number of solutions in \mathcal{U} . The equation $z^2(z+7) = 0$ has just one solution in \mathcal{U} . Thus the equation $z^2(z+7) = e^z - 1$ has precisely one solution in \mathcal{U} .

(5) <u>Solution 1.</u> Recall the Cauchy formula (for z_0 inside γ): $f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)dz}{(z-z_0)}$. From here one gets, by differentiation: $f^{(n-1)}(z_0) = \frac{(n-1)!}{2\pi i} \oint_{\gamma} \frac{f(z)dz}{(z-z_0)^n}$. On the other hand, Cauchy formula for $f^{(n-1)}$ is: $f^{(n-1)}(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f^{(n-1)}(z)dz}{(z-z_0)}$. Thus we get: $\oint_{\gamma} \frac{f(z)dz}{(z-z_0)^n} = \frac{1}{(n-1)!} \oint_{\gamma} \frac{f^{(n-1)}(z)dz}{z-z_0}$.

If the point z_0 does not lie inside the path γ , then both parts vanish.

Solution 2. We are to prove:
$$\oint_{\gamma} \left(\frac{f(z)dz}{(z-z_0)^n} - \frac{1}{(n-1)!} \frac{f^{(n-1)}(z)dz}{z-z_0} \right) = 0, \text{ i.e. } \oint_{\gamma} \frac{f(z) - \frac{f^{(n-1)}(z)}{(n-1)!} (z-z_0)^{n-1}}{(z-z_0)^n} dz = 0.$$
 Expand the numerator at the point z_0 :
$$f(z) - \frac{f^{(n-1)}(z)}{(n-1)!} (z-z_0)^{n-1} = \sum_{k \ge 0} \frac{f^{(k)}(z_0)}{k!} (z-z_0)^k - \frac{1}{(n-1)!} \sum_{k \ge 0} \frac{f^{(k+n-1)}(z_0)(z-z_0)^{k+n-1}}{k!}.$$

To compute the integral we need the coefficient of $(z - z_0)^{n-1}$ in this series. And this coefficient vanishes.

<u>Solution 3.</u> Replace the contour γ by a small circle around z_0 , and compute the residues.

(6) Note that the integral converges absolutely.

 $\mathbf{2}$

It is natural to close the integration path by a (upper or lower) semi-circle, denote the later by C_R . This reduces the integral to the residues of the function at all its poles.

Note that the poles are at the points $\{z = \pi k + i\}_{k \in \mathbb{Z}}$, and these all lie in the upper half-plane. Thus, if we close the path by the upper semi-circle, we will have to sum an infinite series of residues. Therefore it is simpler to close by the lower semi-circle, $C_R = \{R \cdot e^{-i \cdot \theta}, \ \theta \in [0, \pi]\}$, here there are no residues at all. We claim: $\lim_{R \to \infty} \int_{C_R} \frac{dz}{(z-i)^2 \sin(z-i)} = 0$. Indeed, $\sin(z-i)$ does not approach zero on C_R and one has:

$$\left|\int\limits_{C_R} \frac{dz}{(z-i)^2 \sin(z-i)}\right| \le C \cdot \int\limits_{C_R} \frac{|dz|}{R^2} \le \frac{\pi C}{R} \underset{R \to \infty}{\longrightarrow} 0.$$

Thus, as there are no poles in the lower half-plane, we get: $\int_{-\infty}^{\infty} \frac{dt}{(t-i)^2 \sin(t-i)} = 0.$