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(1) Solution 1. The Cauchy integral presentation formula for z ∈ D4(0) reads: f(z) = 1
2πi

∮
|ξ|=8

f(ξ)·dξ
ξ−z . From here one

gets:

|f ′(z)| = | 1

2πi

∮
|ξ|=8

f(ξ) · dξ
(ξ − z)2

| ≤ c

2π

∮
|ξ|=8

∣∣∣ dξ

(ξ − z)2

∣∣∣ |z|<4,
|ξ|=8

≤ c

2π
· 2π · 8

42
=

c

2
.

Solution 2. Take any point z ∈ D4(0), then the disc D4(z) lies inside the disc D8(0). Therefore:

|f ′(z)| = | 1

2πi

∮
|ξ−z|=4

f(ξ) · dξ
(ξ − z)2

| ≤ 1

2π
max

ξ∈∂D4(z)
|f(ξ)| · 2π · 4

42
≤ max

ξ∈∂D8(z)
|f(ξ)| · 4

42
=

c

4
≤ c

4
.

(2) (This is question 7 from homework 8)

Solution 1. One has: |f(z)| =
√
Re(f)2 + Im(f)2. As f is holomorphic, the function |f(z)|2 = Re(f)2 + Im(f)2

is R-differentiable everywhere. But the function (e|z|)2 = e2|z| = e2
√

x2+y2
is not differentiable at (0, 0).

Solution 2. Suppose the condition |f(z)| = e|z| is satisfied for any z ∈ D1(0). Then the function 1
f is holomorphic

on D1(0) and | 1f | = e−|z| ≤ 1. Thus the maximum of | 1f | is achieved at z = 0. Thus, by the maximum principle, 1
f

is constant. Which contradicts |f(z)| = e|z|.
Solution 3. Suppose the condition |f(z)| = e|z| is satisfied for any z ∈ D1(0). Then the holomorphic function

f does not vanish on D1(0). Therefore (by the minimum and maximum principles) both the minimum and the
maximum of |f | are achieved on the boundary ∂D1(0). But |f | is constant on ∂D1(0). Thus |f | must be constant
on the whole D1(0). But |f(z)| = e|z|, which is not constant.

(3) (This question is similar to question 2 of the midterm.)
The function f is holomorphic inside the strip π

2 < |z| < π. Therefore, by Morerra theorem, to establish the (non-

)existence of the primitive function, it is enough to check the (non-)vanishing of
∮

|z|=r

f(z)dz for some r ∈ (π2 , π).

This integral equals the sum of residues at the singular points of f in Dπ
2
(0).

The singular points are: z = 0 and z = ±π
2 .

• The residue at z = 0. Note that Resz=0(e
2
z sin( 1

z2 )) = 0, e.g. by looking at the Laurent expansion. (Or by
expressing this in terms of Res∞.) Note that z = 0 is a removable singularity for tan(z) · ctan( z√

2
). Therefore

Resz=0(f) = 0.

• The residue at z = π
2 . The part e

2
z sin( 1

z2 ) is regular, while the part tan(z) · ctan( z√
2
) has a simple pole. Therefore

Resz=π
2
(f) = (−1) · ctan( π

2
√
2
).

• The residue at z = −π
2 is computed similarly, Resz=−π

2
(f) = (−1) · ctan(− π

2
√
2
).

Altogether, for r ∈ (π2 , π) holds:
∮

|z|=r

f(z)dz = 0. Therefore the primitive function does exist.

(4) (a) The uniqueness theorem for harmonic functions reads: Let U ⊂ C be connected, bounded domain. Let u1, u2 ∈
Har(U) and suppose: either u1 ≡ u2 on some Dϵ(z0) or u1, u2 ∈ C0(U) and u1|∂U ≡ u2|∂U . Then u1 ≡ u2 on U .
(b) The condition u(x, 0) = sin(x) indicates the presence of Re(sin(z)). Thus we write:

u(x, y) = Re(sin(x+ iy)) + v(x+ iy).

Here v must be harmonic and must satisfy: v(x, 0) = 0, v(0, 1) =
√
2. The natural candidate is v(x, y) =

√
2 · y.

Altogether: the function u(x, y) = Re(sin(x+ iy)) +
√
2 · y = cosh(y) · sin(x) +

√
2 · y is harmonic and satisfies the

prescribed conditions.
Remark: this function is non-unique, e.g. e±ysin(x) +

√
2 · y also satisfies the conditions.

(5) By the assumption, the integrand f(ξ)
(ξ−2)(ξ+2)(ξ−2i) is holomorphic in D1(0). Therefore, by Cauchy theorem, F (z) does

not depend on the choice of the integration path. Moreover, F is holomorphic in D1(0). Therefore
∮

|z|= 1
2

F (z)dz = 0.

(6) We choose the orientation of the path: from 1
2 + i · ∞ to 1

2 − i · ∞. First we observe that the integral converges
(absolutely). We want to close the integration path to reduce the computation to residues.

For this we check the singularities of the integrand. The expression 1
(ez+1−1)(z3−1) has poles at {z3 = 1} and at

{z + 1 ∈ 2πi · k}k∈Z. Of these points, the point z = 1 is to the right of the curve, while the others are to the left
of the curve. To avoid working with the infinite number of poles, we close the path by a curve lying in the right
half-plane {Re(z) > 1

2}. For example, by a part of semi-circle, denote it by CR.



2

We claim: lim
R→∞

∫
CR

dz
(ez+1−1)(z3−1) = 0. (For example, because for large R holds:

∣∣∣ 1
(ez+1−1)(z3−1)

∣∣∣ < 10
R3 .) Therefore:∫

γ

dz

(ez+1 − 1)(z3 − 1)
=

∫
γ

dz

(ez+1 − 1)(z3 − 1)
+ lim

R→∞

∫
CR

dz

(ez+1 − 1)(z3 − 1)
=

= 2πi
∑

Res

(
1

(ez+1 − 1)(z3 − 1)

)
= 2πiResz=1

(
1

(ez+1 − 1)(z3 − 1)

)
=

2πi

3(e2 − 1)
.

Note: if the orientation of the path is taken from 1
2 − i · ∞ to 1

2 + i · ∞, then one has:∫
γ

dz

(ez+1 − 1)(z3 − 1)
= −2πi

∑
Resz=zj

(
1

(ez+1 − 1)(z3 − 1)

)
= − 2πi

3(e2 − 1)
.


