(1) First we look for the critical points inside the ball $\left\{x^{2}+y^{2}+z^{2}<1\right\} \subset \mathbb{R}^{3}$. The condition $\operatorname{grad}(f)=(0,0,0)$ gives only one point: $(x, y, z)=(0,0,1)$. This point is on the boundary of the ball and will be addressed lated.

Now we consider the function on the sphere $\left\{g(x, y, z)=x^{2}+y^{2}+z^{2}-1=0\right\} \subset \mathbb{R}^{3}$. We can use Lagrange's method, either in the form of the function $F(x, y, z, \lambda)$ or using the condition: $\operatorname{grad}(f) \sim \operatorname{grad}(g)$.

The approach using Lagrange's function. We define $F(x, y, z, \lambda)=f(x, y, z)-\lambda \cdot g(x, y, z)$ and look for the critical points of F. Then $\operatorname{grad}(F)=\overrightarrow{0}$ gives the system of equations:

$$
2 x+y=\lambda \cdot 2 x, \quad x+2 y=\lambda \cdot 2 y, \quad 2 z-2=\lambda \cdot 2 z
$$

From the first two equations we get: $3(x+y)=2 \lambda(x+y)$ and $x-y=2 \lambda(x-y)$. Which means: $(x+y)(3-2 \lambda)=0$ and $(x-y)(1-2 \lambda)=0$. We get: either $(x=0=y)$ or $\left(x=y \neq 0\right.$ and $\left.\lambda=\frac{3}{2}\right)$ or $\left(x=-y \neq 0\right.$ and $\left.\lambda=\frac{1}{2}\right)$.

For $\lambda=\frac{3}{2}$ we get $z=-2$, for $\lambda=\frac{1}{2}$ we get: $z=2$. In both cases the point cannot lie on the sphere $\left\{x^{2}+y^{2}+z^{2}=1\right\}$. The remaining case, $x=0=y$, gives: $z= \pm 1$.

The approach via $\operatorname{grad}(f) \sim \operatorname{grad}(g)$. This condition is: $\operatorname{rank}\left(\begin{array}{ccc}2 x+y & x+2 y & 2 z-2 \\ 2 x & 2 y & 2 z\end{array}\right)<2$. By row operations on this matrix the condition simplifies to: $\operatorname{rank}\left(\begin{array}{ccc}y & x & -2 \\ x & y & z\end{array}\right)<2$. This condition is translated into equations by writing down the maximal minors:

$$
y^{2}=x^{2}, \quad y z+2 x=0, \quad x z+2 y=0
$$

This implies: either $x=y=0$ or $(x=y \neq 0$ and $z=-2)$ or $(x=-y \neq 0$ and $z=2)$.
The points with $z= \pm 2$ do not lie on the sphere. Thus the only points to check are: $x=0=y, z= \pm 1$.
In either way, once we find the points, we get: $f(0,0,-1)=3=\max$ and $f(0,0,1)=-1=\min$.
(2) We want to pass from the triple integral to a repeated integral. By the direct check, the suitable order of integration is $\int\left(\int\left(\int d y\right) d x\right) d z$. One has:

$$
\iiint_{V} \ldots=\int_{0}^{1}\left(\int_{0}^{\sqrt{z}}\left(\int_{0}^{\sqrt{x}}|y| e^{x^{2}} d y\right) d x\right) d z z^{y \geqq 0} \int_{0}^{1}\left(\int_{0}^{\sqrt{z}} e^{x^{2}}\left(\int_{0}^{\sqrt{x}} y d y\right) d x\right) d z=\int_{0}^{1}\left(\int_{0}^{\sqrt{z}} e^{x^{2}} \frac{x}{2} d x\right) d z=\int_{0}^{1}\left(\frac{e^{z}-1}{4}\right) d z=\frac{e-2}{4} .
$$

Remark: this integral is also computable in the following order: $\int_{0}^{1}\left(\int_{0}^{\sqrt{x}}\left(\int_{x^{2}}^{1}|y| e^{x^{2}} d z\right) d y\right) d x$.
(3) The integral is over an 'unpleasant' curve $\gamma=\left\{x^{10}+y^{10}=100, x \leq 0\right\}$. This curve is not closed. We close it by the (simpler) curve $C=\left\{x^{2}+y^{2}=100 \frac{2}{10}, x \leq 0\right\}$ and use Green's theorem. The orientation of C is taken counterclockwise. Denote by \mathcal{D} the domain whose boundary is the union $\gamma \cup C$. Note that \mathcal{D} does not contain the origin, thus the field of integration is well behaved on \mathcal{D} (has continuous partial derivatives). We get:

$$
\int_{\gamma} \frac{y d x-x d y}{x^{2}+y^{2}}-\int_{C} \frac{y d x-x d y}{x^{2}+y^{2}}=\iint_{\mathcal{D}}\left(\partial_{x} \frac{-x}{x^{2}+y^{2}}-\partial_{y} \frac{y}{x^{2}+y^{2}}\right) d x d y=0
$$

Therefore it is enough to compute $\int_{C} \frac{y d x-x d y}{x^{2}+y^{2}}$, e.g. by parametrization, $\left\{(x(t), y(t))=\left(100^{\frac{1}{10}} \cos (t), 100^{\frac{1}{10}} \sin (t)\right), t \in\right.$ $\left.\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]\right\}$. We get:

$$
\int_{\substack{2 \\ x^{2}+y^{2}=100 \frac{2}{10}, x \leq 0}} \frac{y d x-x d y}{x^{2}+y^{2}}=\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}\left(-\cos ^{2}(t)-\sin ^{2}(t)\right) d t=-\pi
$$

Therefore $\int_{\gamma} \frac{y d x-x d y}{x^{2}+y^{2}}=-\pi$.
(4) The surface is naturally parameterized by x, y. These parameters vary in the region $\left\{x^{2}+y^{2}+2 y \leq 2017\right\}$, which is a shifted disc: $\left\{x^{2}+(y+1)^{2} \leq 2018\right\}$. Therefore, for any function h holds:

$$
\iint h \cdot d S=\iint h \cdot \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d x d y=\iint h \sqrt{2} d x d y
$$

Thus

$$
\text { Area }=\iint_{S} 1 d S=\underset{\left\{x^{2}+y^{2}+2 y \leq 2017\right\}}{ } \sqrt{2} \cdot d x d y=\sqrt{2} \cdot(\text { area of the disc of radius } \sqrt{2018})=\sqrt{2} \cdot \pi \cdot(\sqrt{2018})^{2} .
$$

(5) The surface is the boundary of the ellipsoid $V=\left\{x^{2}+4 y^{2}+9 z^{2} \leq 1\right\}$.

Solution 1. The vector field has continuous partial derivatives in this ellipsoid. Therefore we can use Gauss theorem (note that the prescribed normal is inside, thus we insert the minus sign):
$\iint_{S} \vec{F} \cdot d \vec{S}=-\iiint_{V} \operatorname{div}(\vec{F}) d V=-\iiint_{V}\left(4 x^{3}+8 y^{7}+1\right) d V \stackrel{\text { symmetry }}{=}-0-0-\iiint_{V} 1 \cdot d V=-\left(\begin{array}{c}\text { volume of } \\ \text { ellipsoid with } \\ \text { axes }\left(1, \frac{1}{2}, \frac{1}{3}\right)\end{array}\right)=-\frac{4 \pi}{3} \pi \cdot 1 \cdot \frac{1}{2} \cdot \frac{1}{3}$.
Solution 2. Split the ellipsoid into the upper and lower parts, each of them is naturally parameterized by (x, y) coordinates. For each part take the corresponding (inner) normal, $\overrightarrow{\mathcal{N}}=-\partial_{x} \vec{r} \times \partial_{y} \vec{r}$. Then

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{\substack{(x, y) \in \mathcal{D} \\ z_{+}=\frac{\sqrt{1-x^{2}-4 y^{2}}}{3}}} \vec{F} \cdot \overrightarrow{\mathcal{N}} d x d y+\quad \iint_{\substack{(x, y) \in \mathcal{D} \\ z_{-}=-\frac{\sqrt{1-x^{2}-4 y^{2}}}{3}}} \vec{F} \cdot \overrightarrow{\mathcal{N}} d x d y, \quad \mathcal{D}=\left\{x^{2}+4 y^{2} \leq 1\right\}
$$

The first two components of the field, x^{4}, y^{8}, are even, thus their contributions on the upper and lower parts cancel. Thus, of the whole \vec{F}, only the part $(0,0, z)$ is relevant. Now we compute: $\vec{F} \cdot \overrightarrow{\mathcal{N}}=-\operatorname{det}\left(\begin{array}{ccc}0 & 0 & z \\ 1 & 0 & \partial_{x} z \\ 0 & 1 & \partial_{y} z\end{array}\right)=-z$. Therefore the integral is:

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{(x, y) \in \mathcal{D}}\left(-z_{+}+z_{-}\right) d x d y=-(\text { Volume of the ellipsoid })=-\frac{4 \pi}{3} \pi \cdot 1 \cdot \frac{1}{2} \cdot \frac{1}{3}
$$

(6) Solution 1. Think of the curve C as the (oriented) boundary of the surface $S=\left\{x^{2}+y^{2}+z^{2} \leq 1, y+z=-1\right\}$. This surface is a disc. The (prescribed) orientation of the curve determines the direction of the normal to the disc: $\mathcal{N}=(0,1,1)$. (Note: the choice $(0,-1,-1)$ is wrong.) The field has continuous partial derivatives on S, therefore we can use Stokes theorem. Note that $\operatorname{rot}(\vec{F})=(1,1,1)$ thus we have:

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{S}(1,1,1) \cdot d \vec{S}=\iint_{S}(1,1,1) \cdot \frac{(0,1,1)}{|(0,1,1)|} d S=\sqrt{2} \iint_{S} 1 \cdot d S=\sqrt{2} \cdot(\text { area of } S)
$$

The area of S can be computed in various ways. For example, its diameter is the distance between the points $(0,0,-1),(0,-1,0)$, hence the radius equals $\frac{1}{\sqrt{2}}$. Altogether we get:

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\sqrt{2} \cdot \pi \cdot \frac{1}{2} .
$$

Solution 2. We use the following parametrization of the curve: $\gamma(t)=(x(t), y(t), z(t))=\left(\frac{\cos (t)}{\sqrt{2}}, \frac{\sin (t)-1}{2},-\frac{\sin (t)+1}{2}\right)$.
Note that $\gamma^{\prime}(t)=\left(-\frac{\sin (t)}{\sqrt{2}}, \frac{\cos (t)}{2},-\frac{\cos (t)}{2}\right) \quad$ and $\quad F(\gamma(t))=\left(-\sin (t)-1, \frac{\cos (t)}{\sqrt{2}}, \frac{\cos (t)}{\sqrt{2}}+\frac{\sin (t)-1}{2}\right)$.
Therefore the scalar product of these two vectors is: $F(\gamma(t)) \cdot \gamma^{\prime}(t)=\frac{\sin ^{2}(t)}{\sqrt{2}}+\frac{\sin (t)}{\sqrt{2}}-\frac{\sin (t) \cos (t)}{4}+\frac{\cos (t)}{4}$.
Substitute this into the integral: $\oint_{C} \vec{F} \cdot d \vec{r}=\int_{t=0}^{2 \pi} F(\gamma(t)) \cdot \gamma^{\prime}(t) d t=\ldots$
The integral over $\sin (t)$ vanishes, and so do the integrals over $\cos (t)$ and $\sin (t) \cos (t)=\frac{\sin (2 t)}{2}$. We're finally left with

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\ldots=\int_{t=0}^{2 \pi} \frac{\sin ^{2}(t)}{\sqrt{2}} d t=\frac{1}{2 \sqrt{2}} \int_{t=0}^{2 \pi} 1-\cos (2 t) d t=\frac{\pi}{\sqrt{2}}
$$

