(1) The domain $\left\{\frac{2^{2}}{2}-x+\frac{y^{2}}{2}+y \leq 0\right\}$ can be presented in the form $\left\{(x-1)^{2}+(y+1)^{2} \leq 2\right\}$, it is a disc of radius $\sqrt{2}$, centered at $(1,-1)$.

Solution 1. The function $f(x, y)=|x y|$ satisfies: $f(x, y)=f(-x, y)=f(x,-y)=f(-x,-y)$. Therefore, while searching for the critical points in the interior points, we can assume $x \geq 0$ and $y \geq 0$. The only critical point of $x y$ is $(0,0)$. Note that it lies on the boundary of the disc. To this we must add also the points where f is non-differentiable, these are all the points satisfying $x y=0$. At all such points f vanishes.

When looking for the critical points of f on the boundary of the disc, we again use $f(x, y)=f(-x, y)=f(x,-y)=$ $f(-x,-y)$. Therefore it is enough to check the critical points of $x y$ on the circle $(x-1)^{2}+(y+1)^{2}=2$, and also to check the points where the function might have the differentiability problem, i.e. $|x y|=0$. The critical points of $x y$ on the circle $(x-1)^{2}+(y+1)^{2}=2$ are obtained in the standard way. (By Lagrange multiplier's method, or by the condition $\operatorname{grad}(x y) \sim \operatorname{grad}\left((x-1)^{2}+(y+1)^{2}-2\right)$.) One gets the condition $(y-x+1)(y+x)=0$. Together with $(x-1)^{2}+(y+1)^{2}=2$ one gets:

- Either $x=-y=0$, with $f(0,0)=0$;
- Or $x=-y=2$, with $f(-2,2)=4$;
- Or $y+1=x$, with $x=\frac{1 \pm \sqrt{3}}{2}$. Here: $f\left(\frac{1 \pm \sqrt{3}}{2}, \frac{-1 \pm \sqrt{3}}{2}\right)=\left|\frac{-1-3}{2}\right|=2$.

Thus the minimal value of f is 0 , while the maximal is 4 .
Solution 2. As $f(x, y)=|x y|$, one has: $f \geq 0$. Thus the minimal value of f is 0 and it is obtained at the set of points where $x y=0$. To find the maximal value of f one can pass to the polar coordinates, then the expression for f is: $r^{2}\left|\frac{\sin (2 \phi)}{2}\right|$. Now note that $|\sin (2 \phi)| \leq 1$ and attains 1 for $\phi=-\frac{\pi}{4}$. In addition, by drawing the circle $\left\{(x-1)^{2}+(y+1)^{2}=2\right\}$, one gets: the maximal value of r is $2 \sqrt{2}$ and is attained for $\phi=-\frac{\pi}{4}$. Altogether we get: $f(x, y) \leq 4$ and this value is achieved at the point $(2,-2)$.
(2) We pass from the triple integral to the repeated integral, projecting onto the $y z$-plane. The projection is the domain bounded by two ellipses. Thus we have:

(3) Solution 1. The domain is $\mathcal{D}=\left\{x^{\frac{2}{3}}+y^{2} \leq 1\right\}$. Its area, $\iint_{\mathcal{D}} 1 d S$, can be computed in different ways. For example, introduce the appropriate modification of polar coordinates: $x=r^{3} \cdot \cos ^{3}(\phi), y=r \cdot \sin (\phi)$. In these coordinates: $\mathcal{D}=\{\phi \in[0,2 \pi], r \in[0,1]\}$. The Jacobian of this coordinate change is: $\operatorname{det}\left|\frac{\partial(x, y)}{\partial(r, \phi)}\right|=3 r^{3} \cos ^{2}(\phi)$. Finally:

$$
\iint_{\mathcal{D}} 1 d S=\iint_{\substack{\phi \in[0,2 \pi], r \in[0,1]}} 3 r^{3} \cos ^{2}(\phi) d r d \phi=\frac{3}{4} \int_{0}^{2 \pi} \frac{1+\cos (2 \phi)}{2} d \phi=\frac{3}{8} 2 \pi
$$

Solution 2. Recall that the area can be computed using Green's formula for a particular vector field: $\oint_{\partial S} x d y=\iint_{S} 1 d S$. Using this we have:

$$
\iint_{S} 1 d S=\oint_{\partial S} x d y=\int_{0}^{2 \pi} \cos ^{4}(t) d t=\frac{3}{4} \pi
$$

(4) The surface is naturally parameterized by x, y, their domain of variation is: $\mathcal{D}=\left\{x^{2}+y^{2} \leq 2, x+y \geq 0\right\}$. Therefore the needed area equals:

$$
\iint_{S} 1 d S=\iint_{D} \sqrt{1+\left(\partial_{x} z\right)^{2}+\left(\partial_{y} z\right)^{2}} d x d y=\iint_{\substack{x^{2}+y^{2} \leq 2, x+y \geq 0}} \sqrt{1+4\left(x^{2}+y^{2}\right)} d x d y=\iint_{\substack{0 \leq r \leq \sqrt{2} \\ \phi \in\left[-\frac{\pi}{4}, \frac{3 \pi}{4}\right]}} \sqrt{1+4 r^{2}} d \phi(r \cdot d r)=\frac{13 \pi}{6} .
$$

(5) Note that $\operatorname{div}\left(\frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right)=0$. Therefore we can use Gauss theorem to replace the surface by a simpler one, as far as the field remains differentiable in the whole body of integration.

Solution 1. First we note: $\iint_{\substack{|x|^{3}+|y|^{3}+2| |^{3}=1 \\ z>0}} \frac{(x, y, z) \cdot d \vec{S}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}=\iint_{|x|^{3}+|y|^{3}+\left.1 z\right|^{3}=1}^{z \leq 0} 0 ~ \frac{(x, y, z) \cdot d \vec{S}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}$, as both the field and the normal are anti-symmetric under $(x, y, z) \leftrightarrow(-x,-y,-z)$. Therefore

$$
\iint_{\substack{|x|^{3}+|y|^{3}+|z|^{3}=1 \\ z \geq 0}} \frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \cdot d \vec{S}=\frac{1}{2} \iiint_{|x|^{3}+|y|^{3}+|z|^{3}=1} \frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \cdot d \vec{S} .
$$

To compute this later integral we would like to use Gauss theorem, but the field is not differentiable at ($0,0,0$). Thus we use Gauss theorem for the body: $\left\{|x|^{3}+|y|^{3}+|z|^{3} \leq 1, x^{2}+y^{2}+z^{2} \geq \epsilon^{2}\right\}$. Here $0<\epsilon<1$ is a (small) constant. As $\operatorname{div}\left(\frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right)=0$ we have:

$$
\frac{1}{2} \iint_{|x|^{3}+|y|^{3}+|z|^{3}=1} \frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \cdot d \vec{S}=-\frac{1}{2} \iiint_{x^{2}+y^{2}+z^{2}=\epsilon^{2}} \frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \cdot d \vec{S}, \quad \text { with the inner normal. }
$$

For the later integral we note that $x^{2}+y^{2}+z^{2} \equiv \epsilon^{2}$ along the surface, thus

$$
-\frac{1}{2} \iint_{x^{2}+y^{2}+z^{2}=\epsilon^{2}} \frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \cdot d \vec{S}=-\frac{1}{2} \iint_{x^{2}+y^{2}+z^{2}=\epsilon^{2}} \frac{(x, y, z)}{\epsilon^{3}} \cdot d \vec{S} \stackrel{\text { Gauss }}{\underline{1}} 2 \epsilon^{3} \iiint_{x^{2}+y^{2}+z^{2} \leq \epsilon^{2}} 3 d V=\frac{4 \pi}{2} .
$$

Solution 2. We would like to replace the initial surface by the planar domain $\left\{|x|^{3}+|y|^{3} \leq 1, z=0\right\}$. But this domain contains the point $(0,0,0)$, where the field is not differentiable. Thus we replace the initial surface by the union:

$$
\underbrace{\left\{\begin{array}{l}
|x|^{3}+|y|^{3} \leq 1, z=0 \\
x^{2}+y^{2} \geq \epsilon^{2}
\end{array}\right\}}_{S_{1}} \cup \underbrace{\left\{x^{2}+y^{2}+z^{2}=\epsilon^{2}, z \geq 0\right\}}_{S_{2}} .
$$

As $\operatorname{div}\left(\frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right)=0$ we have by Gauss theorem:

$$
\iint_{\left.|x|^{3}+\mid y\right)^{3}+|z|^{3}=1}^{z \geq 0}<\frac{(x, y, z) \cdot d \vec{S}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}+\iint_{S_{1}} \frac{(x, y, z) \cdot d \vec{S}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}+\iint_{S_{2}} \frac{(x, y, z) \cdot d \vec{S}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}=0 .
$$

In the later two integrals the normals are taken downstairs.
The normal to S_{1} is $(0,0,-1)$, therefore for the integral over S_{1} we have: $(x, y, z) \cdot d \vec{S}=-z d S=0$, as $z=0$. Thus

$$
\iint_{\substack{|x|^{3}+|y|^{3}+|z|^{3}=1}} \frac{(x, y, z) \cdot d \vec{S}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}=\iint_{S_{2}} \frac{(x, y, z) \cdot d \vec{S}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}, \quad \text { with the normal upstairs. }
$$

The later integral is computed in various ways, e.g.

$$
\iint_{S_{2}} \frac{(x, y, z) \cdot d \vec{S}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}=\iint_{S_{2}} \frac{\vec{r} \cdot \frac{\vec{r}}{r} d S}{r^{3}}=\iint_{S_{2}} \frac{d S}{r^{2}}=\frac{1}{\epsilon^{2}} \iint_{S_{2}} d S=\frac{\text { area of } S_{2}}{\epsilon^{2}}=\frac{1}{\epsilon^{2}} 2 \pi \epsilon^{2} .
$$

(6) The integration path bounds the disc, D, we apply Stokes theorem: $\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{D}(1,-1,1) \cdot d \vec{S}$. By the assumption on the direction of the path, the (unit) normal to the disc is: $\frac{(0,1,-1)}{\sqrt{2}}$. Therefore:

$$
\oint_{C} \vec{F} \cdot d \vec{r}=-\sqrt{2} \cdot(\text { the area of } D) .
$$

The diameter of D is obtained as the distance between the points $(0,0,0)$ and $(0,1,1)$, which is $\sqrt{2}$.
Therefore $\oint_{C} \vec{F} \cdot d \vec{r}=-\sqrt{2} \pi\left(\frac{1}{\sqrt{2}}\right)^{2}$.

