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(1) The domain { 2
2

2 − x+ y2

2 + y ≤ 0} can be presented in the form {(x− 1)2 + (y + 1)2 ≤ 2}, it is a disc of radius
√

2,
centered at (1,−1).

Solution 1. The function f(x, y) = |xy| satisfies: f(x, y) = f(−x, y) = f(x,−y) = f(−x,−y). Therefore, while
searching for the critical points in the interior points, we can assume x ≥ 0 and y ≥ 0. The only critical point of xy is
(0, 0). Note that it lies on the boundary of the disc. To this we must add also the points where f is non-differentiable,
these are all the points satisfying xy = 0. At all such points f vanishes.

When looking for the critical points of f on the boundary of the disc, we again use f(x, y) = f(−x, y) = f(x,−y) =
f(−x,−y). Therefore it is enough to check the critical points of xy on the circle (x− 1)2 + (y + 1)2 = 2, and also to
check the points where the function might have the differentiability problem, i.e. |xy| = 0. The critical points of xy
on the circle (x− 1)2 + (y + 1)2 = 2 are obtained in the standard way. (By Lagrange multiplier’s method, or by the
condition grad(xy) ∼ grad((x− 1)2 + (y + 1)2 − 2).) One gets the condition (y − x+ 1)(y + x) = 0. Together with
(x− 1)2 + (y + 1)2 = 2 one gets:
• Either x = −y = 0, with f(0, 0) = 0;
• Or x = −y = 2, with f(−2, 2) = 4;

• Or y + 1 = x, with x = 1±
√
3

2 . Here: f( 1±
√
3

2 , −1±
√
3

2 ) = |−1−32 | = 2.
Thus the minimal value of f is 0, while the maximal is 4.

Solution 2. As f(x, y) = |xy|, one has: f ≥ 0. Thus the minimal value of f is 0 and it is obtained at the set of
points where xy = 0. To find the maximal value of f one can pass to the polar coordinates, then the expression

for f is: r2| sin(2φ)2 |. Now note that |sin(2φ)| ≤ 1 and attains 1 for φ = −π4 . In addition, by drawing the circle

{(x− 1)2 + (y + 1)2 = 2}, one gets: the maximal value of r is 2
√

2 and is attained for φ = −π4 . Altogether we get:
f(x, y) ≤ 4 and this value is achieved at the point (2,−2).

(2) We pass from the triple integral to the repeated integral, projecting onto the yz-plane. The projection is the domain
bounded by two ellipses. Thus we have:
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ln(2− ỹ2 − z̃2)

2 · 2 · 3
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(3) Solution 1. The domain is D = {x 2
3 + y2 ≤ 1}. Its area,

s

D
1dS, can be computed in different ways. For example,

introduce the appropriate modification of polar coordinates: x = r3 · cos3(φ), y = r · sin(φ). In these coordinates:

D = {φ ∈ [0, 2π], r ∈ [0, 1]}. The Jacobian of this coordinate change is: det|∂(x,y)∂(r,φ) | = 3r3cos2(φ). Finally:
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Solution 2. Recall that the area can be computed using Green’s formula for a particular vector field:
∮
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S

1dS.

Using this we have:
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(4) The surface is naturally parameterized by x, y, their domain of variation is: D = {x2 +y2 ≤ 2, x+y ≥ 0}. Therefore
the needed area equals:
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(5) Note that div( (x,y,z)

(x2+y2+z2)
3
2

) = 0. Therefore we can use Gauss theorem to replace the surface by a simpler one, as far

as the field remains differentiable in the whole body of integration.

Solution 1. First we note:
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normal are anti-symmetric under (x, y, z)↔ (−x,−y,−z). Therefore
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To compute this later integral we would like to use Gauss theorem, but the field is not differentiable at (0, 0, 0). Thus
we use Gauss theorem for the body: {|x|3 + |y|3 + |z|3 ≤ 1, x2 + y2 + z2 ≥ ε2}. Here 0 < ε < 1 is a (small) constant.
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) = 0 we have:
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For the later integral we note that x2 + y2 + z2 ≡ ε2 along the surface, thus
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Solution 2. We would like to replace the initial surface by the planar domain {|x|3 + |y|3 ≤ 1, z = 0}. But this
domain contains the point (0, 0, 0), where the field is not differentiable. Thus we replace the initial surface by the
union: { |x|3 + |y|3 ≤ 1, z = 0

x2 + y2 ≥ ε2
}

︸ ︷︷ ︸
S1

∪{x2 + y2 + z2 = ε2, z ≥ 0}︸ ︷︷ ︸
S2

.

As div( (x,y,z)

(x2+y2+z2)
3
2

) = 0 we have by Gauss theorem:
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In the later two integrals the normals are taken downstairs.

The normal to S1 is (0, 0,−1), therefore for the integral over S1 we have: (x, y, z) · d~S = −zdS = 0, as z = 0.
Thus
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, with the normal upstairs.

The later integral is computed in various ways, e.g.
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(6) The integration path bounds the disc, D, we apply Stokes theorem:
∮
C

~F · d~r =
s

D

(1,−1, 1) · d~S. By the assumption

on the direction of the path, the (unit) normal to the disc is: (0,1,−1)√
2

. Therefore:∮
C

~F · d~r = −
√

2 · (the area of D).

The diameter of D is obtained as the distance between the points (0, 0, 0) and (0, 1, 1), which is
√

2.

Therefore
∮
C

~F · d~r = −
√

2π( 1√
2
)2.


