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(1) The domain {% -+ % + 1y < 0} can be presented in the form {(z — 1)? + (y + 1)? < 2}, it is a disc of radius v/2,
centered at (1, —1).

Solution 1. The function f(z,y) = |zy| satisfies: f(x,y) = f(—=z,y) = f(z,—y) = f(—=z,—y). Therefore, while
searching for the critical points in the interior points, we can assume x > 0 and y > 0. The only critical point of zy is
(0,0). Note that it lies on the boundary of the disc. To this we must add also the points where f is non-differentiable,
these are all the points satisfying xy = 0. At all such points f vanishes.

When looking for the critical points of f on the boundary of the disc, we again use f(z,y) = f(—=z,y) = f(z,—y) =
f(—z,—y). Therefore it is enough to check the critical points of zy on the circle (x — 1) + (y + 1)? = 2, and also to
check the points where the function might have the differentiability problem, i.e. |xy| = 0. The critical points of xy
on the circle (z — 1)2 + (y + 1)? = 2 are obtained in the standard way. (By Lagrange multiplier’s method, or by the
condition grad(zy) ~ grad((x — 1)> + (y + 1)2 — 2).) One gets the condition (y — = + 1)(y + z) = 0. Together with
(x —1)2+ (y + 1)? = 2 one gets:

e Either x = —y =0, with f(0,0) = 0;

e Or x = —y =2, with f(—2,2) = 4;

e Ory+1=u=z, withae = %‘/5 Here: f(lg‘ﬁ7 ’lg\/g) =|=1=3|=2.

Thus the minimal value of f is 0, while the maximal is 4.

Solution 2. As f(x,y) = |xy|, one has: f > 0. Thus the minimal value of f is 0 and it is obtained at the set of
points where zy = 0. To find the maximal value of f one can pass to the polar coordinates, then the expression
for f is: r2|%22¢)| Now note that [sin(2¢)| < 1 and attains 1 for ¢ = —%. In addition, by drawing the circle
{(z = 1)? + (y + 1)® = 2}, one gets: the maximal value of r is 2v/2 and is attained for ¢ = —Z. Altogether we get:
f(z,y) <4 and this value is achieved at the point (2, —2).

(2) We pass from the triple integral to the repeated integral, projecting onto the yz-plane. The projection is the domain
bounded by two ellipses. Thus we have:
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(3) Solution 1. The domain is D = {x§ + y* < 1}. Its area, [[1dS, can be computed in different ways. For example,
D

introduce the appropriate modification of polar coordinates: x = 72 - cos®(¢), y = r - sin(¢). In these coordinates:

D ={¢ €[0,2n], r € [0,1]}. The Jacobian of this coordinate change is: det| g%fz“ = 3r3cos?(¢). Finally:
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Solution 2. Recall that the area can be computed using Green’s formula for a particular vector field: § zdy = [[ 1dS.
S

oS
Using this we have:

2m
fj 1dS = fxdy = /0054(t)dt = %r.
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(4) The surface is naturally parameterized by z, y, their domain of variation is: D = {22 +y? < 2, z+y > 0}. Therefore
the needed area equals:
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Note that div(—&L2) ) — 0. Therefore we can use Gauss theorem to replace the surface by a simpler one, as far
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as the field remains differentiable in the whole body of integration.
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normal are anti-symmetric under (z,y, z) > (—z, —y, —z). Therefore
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To compute this later integral we would like to use Gauss theorem, but the field is not differentiable at (0,0, 0). Thus

we use Gauss theorem for the body: {|z|® + |y|® + |2 < 1, 22 +y? + 22 > €2}. Here 0 < ¢ < 1 is a (small) constant.
As div(—Z22) ) = 0 we have:
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For the later integral we note that 22 + y? + 22 = €2 along the surface, thus
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Solution 2. We would like to replace the initial surface by the planar domain {|z|?> + |y|> < 1, z = 0}. But this
domain contains the point (0,0,0), where the field is not differentiable. Thus we replace the initial surface by the

union:
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As div(— =92y — 0 we have by Gauss theorem:
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In the later two integrals the normals are taken downstairs.
The normal to Sy is (0,0, —1), therefore for the integral over S; we have: (z,y,2)-dS = —2dS =0, as z = 0.
Thus

jj (:Uy,— = jj (@.y,2 with the normal upstairs.
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The later integral is computed in various ways, e.g.
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The integration path bounds the disc, D, we apply Stokes theorem: § F.di = fJa,-1,1)- dS. By the assumption
c D

on the direction of the path, the (unit) normal to the disc is: % Therefore:
j{ﬁ - dF = —V/2 - (the area of D).
c

The diameter of D is obtained as the distance between the points (0,0,0) and (0,1, 1), which is /2.
Therefore gF di = —\/571-(%)2_



