
Solutions of Moed.C in Hedva2.ME
(201.1.9721) 06.09.2017 Ben Gurion University

(1) Note that ln(t) is an increasing function. Therefore it is enough to find the global minimum/maximum of the
function f(x, y) = x2 + y2 on the curve. The condition for the critical point is: grad(f) ∼ grad(g). This means:

rank

(
2x 2y

3x− y 3y − x

)
< 2. Thus the condition is: x2 = y2. We get:

• either x = y and then x+ y = ±2. So the points are (1, 1) and (−1,−1).
• or x = −y and then x− y = ±1. So the points are ( 12 ,−

1
2 ) and (− 1

2 ,
1
2 ).

Thus the global maximum of ln(f) is achieved at the points (1, 1), (−1,−1), and equals ln(2). The global minimum
is achieved at the points ( 12 ,−

1
2 ), (−

1
2 ,

1
2 ), and equals −ln(2).

(2) The integration in the given order is unpleasant, therefore we first return to the triple integral,
t
V

|z|dxdydz
x4+1 , where

V = {−1 ≤ z ≤ 0, 0 ≤ y ≤ 8, 3
√
y ≤ x ≤ 2} = {−1 ≤ z ≤ 0, 0 ≤ y ≤ x3, 0 ≤ x ≤ 2}.

Therefore:
t
V

|z|dxdydz
x4+1 =

2∫
0

dx
x3∫
0

dy
0∫

−1

|z|dz
x4+1 = 1

2

2∫
0

x3dx
x4+1 = ln(17)

8 .

(3) Rewrite the integral in the form
∮
C

(
ydx

x2+y2 − xdy
x2+y2

)
+

∮
C

ydx. The part
∮
C

ydx is computed immediately using the

parametrization C = {(cos(ϕ), sin(ϕ)√
2

), ϕ ∈ [0, 2π]}. We have (note that C is oriented counterclockwise):

∮
C

ydx = −
2π∫
0

(−sin2(ϕ)√
2

)dϕ =
π√
2
.

For the first part we use Green’s theorem in the domain D = {x2 + 2y2 ≤ 1, x2 + y2 ≥ ϵ2}. In this domain the
vector field is differentiable and we get:∮

C

(
ydx

x2 + y2
− xdy

x2 + y2

)
−

∮
x2+y2=ϵ2

clockwise

(
ydx

x2 + y2
− xdy

x2 + y2

)
= −

x
D

(
−∂x

x

x2 + y2
− ∂y

ydx

x2 + y2

)
= 0.

(Here the minus sign in front of
s
D

is because both curves are clockwise oriented.) Thus we have:

∮
C

(
ydx

x2 + y2
− xdy

x2 + y2

)
= −

∮
x2+y2=ϵ2

counterclockwise

(
ydx

x2 + y2
− xdy

x2 + y2

) x = cos(ϕ)
y = sin(ϕ)
=== −

2π∫
0

(−1)dϕ = 2π.

Altogether:
∮
C

(
ydx

x2+y2 − xdy
x2+y2

)
+
∮
C

ydx = 2π + π√
2
.

(4) The surface {y2 = x2 + z2 + 1} is a hyperboloid with two parts, one lies in the region y ≥ 1, the other lies in
the region y ≤ −1. Therefore the prescribed integral is:

s
y2=x2+z2+1

1≤y≤2

ydS. This surface is the graph of function,

y =
√
x2 + z2 + 1, over the domain {x2 + z2 ≤

√
3}. Therefore

s
y2=x2+z2+1

1≤y≤2

ydS =
s

x2+z2≤
√
3

√
x2 + z2 + 1 ·

√
1 + (∂xy)2 + (∂zy)2 · dxdz =

s
x2+z2≤

√
3

√
x2 + z2 + 1 ·

√
1+2x2+2y2

1+x2+z2 · dxdz =

=
2π∫
0

√
3∫

0

√
1 + 2r2 · rdrdϕ = π

3∫
0

√
1 + 2t · dt = 14π

3 .

(5) To use Gauss theorem we close the surface by the cap S1 = {z = 0, x2 + y2 ≤ 1}, with the normal downstairs. Then
S ∪ S1 is a closed surface with the normal inside. Therefore Gauss theorem gives:s

S

(y2017, x2017, z) · dS⃗ +
s
S1

(y2017, x2017, z) · dS⃗ = −
s
z≤0

x2+y2+2017z2≤1

div(y2017, x2017, z) · dxdydz =

= −
s
z≤0

x2+y2+2017z2≤1

dxdydz = −
s
z≤0

x2+y2+z̃2≤1

dxdy dz̃√
2017

= − 2π
3
√
2017

.

The normal to S1 is (0, 0,−1), therefore
s
S1

(y2017, x2017, z) · dS⃗ = −
s

x2+y2≤1

z(x, y) · dxdy = 0.
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Thus
s
S

(y2017, x2017, z) · dS⃗ = − 2π
3
√
2017

.

(6) The intersection of the surfaces x2 + y2 + z2 = 3, x2 + y2 − z = 1 is a circle that lies in the plane z = 1. We think
of this circle as the boundary of the disc D = {z = 1, x2 + y2 ≤ 2} and use Stokes theorem. The orientation of the
circle corresponds to the normal (0, 0,−1) to D. Therefore∫

C

F⃗ · dr⃗ =
x
D

rot(F⃗ )dS⃗ =
x
z=1

x2+y2≤2

(−2z2)(−1)dxdy = 4π.


