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Note that In(t) is an increasing function. Therefore it is enough to find the global minimum/maximum of the
function f(z,y) = 2% + y? on the curve. The condition for the critical point is: grad(f) ~ grad(g). This means:
rank 2z 2y < 2. Thus the condition is: z? = 3%. We get:
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e cither z = y and then x + y = 2. So the points are (1,1) and (—1,—1).

e or z = —y and then z — y = £1. So the points are (3, —3) and (f% %)
Thus the global maximum of In(f) is achieved at the points (1, 1), (—1, —1), and equals In(2). The global minimum

is achieved at the points (3, —1), (=1, 1), and equals —in(2).

The integration in the given order is unpleasant, therefore we first return to the triple integral, Hf Mﬁ%, where
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Rewrite the integral in the form ¢ (m;/j”;,_, - I;”f;z) + § ydz. The part §ydx is computed immediately using the
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parametrization C' = {(cos(¢), S”\L/g’) ), ¢ € [0,27]}. We have (note that C' is oriented counterclockwise):
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For the first part we use Green’s theorem in the domain D = {2% + 2y% < 1, 22 + y? > ¢2}. In this domain the
vector field is differentiable and we get:
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(Here the minus sign in front of [[ is because both curves are clockwise oriented.) Thus we have:
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Altogether: g (a:ngyz — wzny) +gydac =27 + 75

The surface {y?> = 2% + 22 + 1} is a hyperboloid with two parts, one lies in the region y > 1, the other lies in
the region y < —1. Therefore the prescribed integral is: If ydS. This surface is the graph of function,
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y =12+ 22 + 1, over the domain {z? + 22 < v/3}. Therefore
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To use Gauss theorem we close the surface by the cap S; = {z = 0, 2% +y? < 1}, with the normal downstairs. Then
S'U S is a closed surface with the normal inside. Therefore Gauss theorem gives:

ff(y2017,a?2017, z) . d§—|— H(y2017,w2017,2) -dg - _ ﬂ" div(y2017,x2017, z) - dadydz =
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The normal to Sy is (0,0, —1), therefore ﬂ(y20177x2017’ 2) A = ([ +(ey)-drdy—0.

S1 x24+9y2<1



Thus Lf(ym”,xzo”, 2) .dS = -3 22%17.

(6) The intersection of the surfaces #2 + 32 + 22 = 3, 22 + y? — 2 = 1 is a circle that lies in the plane z = 1. We think
of this circle as the boundary of the disc D = {z = 1, 2? + y? < 2} and use Stokes theorem. The orientation of the
circle corresponds to the normal (0,0, —1) to D. Therefore

/ﬁ -drF = ff rot(F)dS = jf (—22%)(—1)dwdy = 4r.
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