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(1) (a) The conditions fx(0, 0) = 0 = fy(0, 0) do not imply even the continuity of the function, let alone differentiability.

The function: f(x, y) =

{
xy

x2+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0)
satisfies the assumptions, but most directional derivatives do

not exist.
Even if all the directional derivatives exist, the function is not necessarily differentiable, and some derivatives
may not vanish. For example,

f(x, y) =

{
y2

x x 6= 0

0 x = 0

(b) The assumption det(Hf (a)) < 0 implies: either one eigenvalue is negative (and two are positive) or all the
eigenvalues are negative.
The later contradicts the assumption that the sum of eigenvalues is zero. Therefore there are eigenvalues of
different signs, hence the point is a saddle point. Thus a is not an extremum.
Remark: it follows from the condition det(Hf (a)) < 0 that a cannot be a local minimum. But we cannot
conclude from this condition alone that a is a saddle point.

(c) Note that ~F = grad ln(x
2+4y2+z2)

2 and S is precisely the level surface for the function ln(x2+4y2+z2). Therefore,

at each point of S the field ~F is perpendicular to S. Thus
∫
C

~F · d~C = 0 for any smooth curve on S.

Alternatively, as ~F = grad(φ), we get
∫
C

~F · d~C = φ(end− point)− φ(start− point) = 0

(2) The domain of the definition of f is: y 6= 0, 1.
(a) The level curve f(x, y) = 1 is the hyperbola x2 + 1

2 = 2(y − 1
2 )2, with

the punctures at (0, 0) and (± 1
2 , 1).

(b) The level curve f(x, y) = −1 is the parabola x2 = y, with
the punctures at (0, 0) and (±1, 1).

(c) The level curve f(x, y) = −2 is the circle x2 + (y − 1)2 = 1, with
the punctures at (0, 0) and (±1, 1).

(3) (a) Solution 1.
The natural parameters for the surface S are (x, y). Therefore the normal is:
~N = −∂x~r × ∂y~r = (2x, 2y,−1). (We take here the − sign, to get Nz < 0.) Thus

x

S

~Fd~S =
x

{x2+y2≤1}

~F · (2x, 2y,−1)dxdy =
x

{x2+y2≤1}

2(x4 + y4)dxdy =

= 2

1∫
r=0

2π∫
φ=0

r4(cos4(φ) + sin4(φ))rdrdφ = 2 · 2π · 1

6
· 3

4
=
π

2
.

underlineSolution 2. Close the surface by the cap S1 = {z = 1, x2 + y2 ≤ 1}. Note that
s

S1

~F · d ~S1 = 0, as

Fz = 0.
Therefore, using Gauss theorem we get:

x

S

~Fd~S =
y

x2+y2≤z≤1

div(~F )dxdydz
cylindrical

=

1∫
r=0

2π∫
φ=0

1∫
z=r2

3r3drdφdz =
π

2
.

Remark: you cannot use Gauss’ theorem directly to compute this integral, since the surface is not closed. The
above argument works only because the surface integral on the ”lid” we added was 0. This, of course, has to be
justified.

(b) Note that the field F has no z-component, therefore
∮
γ

F · dγ is a curvilinear integral over the closed curve

{( cos(t)√
2
, sin(t)√

3
), t ∈ [0, 2π]} ⊂ R2.

This curve bounds the domain {2x2 + 3y2 ≤ 1} and the field is differentiable in this domain. Thus we can use
Green’s formula, ∮

γ

F · dγ =
x

{2x2+3y2≤1}

(0− 0)dxdy = 0

Alternatively, note that γ is a simple closed curve on the surface S of the previous clause. So we may use Stokes’
theorem. Since curl(F ) = 0 (obviously), we get the same result.
Remark you cannot use Green’s theorem directly to compute a line integral in R3. To use Green’s theorem
you have to reduce the problem to one in R2. But this has to be justified, as in the first solution. To use Stokes’



2

theorem you have to provide a (parametric) surface of which γ is the boundary. This has to be justified, as –
for example – in Solution 2.

(4) (a) It is enough to prove: the intersection has a C1-parametrization locally at each of its points.
Solution 1. From the second equation extract z = 10 − x − y and substitute to the first equation. Then it is
enough to prove: the equation f(x, y) = x3 + y3 + 3(10 − x − y) = 0 admits a C1-solution, y(x) or x(y), at
each point. This can be achieved by the implicit function theorem, once we check that grad(f(x, y)) 6= (0, 0).
Indeed, the condition grad(f(x, y)) = (0, 0) means: x2 = 1 and y2 = 1. Thus the gradient vanishes only at the
points (±1,±1). But these points do not satisfy f(x, y) = 0. Thus, the intersection is a smooth curve.
Solution 2. We apply the implicit function theorem to the system of equations
x3 + y3 + 3z = 0
x+ y + z = 10

. To ensure a C1 solution it is enough to check that the matrix of the first derivatives is

non-degenerate at each point of the solution. Indeed,

suppose rank

(
3x2 3y2 3
1 1 1

)
< 2. Then the first row of the Jacobi matrix is linearly dependent on the second

row, i.e., x2 = y2 = 1. But the points (±1,±1, z) do not solve the system. Thus the intersection is a smooth
curve.
Remark Studying the intersection of the two surfaces by considering the 0-set of certain (linear – or other)
combinations of the two equations will not, in general work. First, the 0-set of such combinations will, as a rule,
be larger than the intersection of the two surfaces (in general, it will be a surface itself). Smoothness of that 0-set
will not, therefore, imply (at least not without some argument) smoothness of the desired curve. Even if we can
produce a combination whose 0-set is precisely the curve we are interested in, e.g., (x+y+z−10)2+(x3+y3+3z)2

it may have degenerate points that are harder to study than in the original problem. In the above example the
0-set of the function (which is the set we are interested in) is contained in the 0-set of the differential, so we
cannot (directly) use the implicit function theorem.

(b) Solution 1.
Suppose ∇(f(0, 0)) 6= (0, 0) then, by implicit function theorem, the equation f(x, y) = 0 admits a smooth
solution at (0, 0), i.e. the curve {f(x, y) = 0} is smooth
at (0, 0). But the prescribed curve {(x, |x|), x ∈ [−1, 1]} is not smooth.
Solution 2. Restrict the function f(x, y) to the level curve, we get the function of one variable, f(x, φ(x)). This
function is constant, as we are on
the level curve. Thus the total derivative of this function is zero. Note that φ(x) is C1 for x 6= 0. Therefore we
have:
• ∂xf |(x,φ(x)) + ∂yf |(x,φ(x)) = 0 for x > 0
• ∂xf |(x,φ(x)) − ∂yf |(x,φ(x)) = 0 for x < 0.

Recall that f(x, y) is C1, thus in these two equations we can take the limits x→ 0+ and x→ 0−.
Then we get in the limit: ∂xf |(0,0) = 0 = ∂xf |(0,0).
Solution 3. As f is C1 write Lagrange expansion at (0, 0): f(x, y) = f(0, 0) + grad(f)|c · (x, y).
• For any ε > x > 0 we have f(x, x) = f(0, 0). Thus grad(f)|c · (x, x) = 0 and by taking limit x → 0+ we

get: grad(f)|(0,0) · (1, 1) = 0.

• For any −ε < x < 0 we have: f(−x, x) = f(0, 0). Thus grad(f)|c · (−x, x) = 0 and by taking limit x→ 0−

we get: grad(f)|(0,0) · (−1, 1) = 0.
Together this gives grad(f)|(0,0) = (0, 0).


