Introduction to Algebraic Curves

and Algebraic Geometry

Homework 0

Summer 2019 (D.Kerner)

Below \mathbb{k} is one of \mathbb{R}, \mathbb{C}.
(1) Draw/imagine the following subsets of \mathbb{k}^{n}. At which points the subsets are smooth? (real/complex manifolds?) What are the singular points? How do the subsets look like near their singular points? Which subsets consist of "several components"? (i.e. are reducible) What is the(real/complex) dimension of the components? Do the subsets "separate" the ambient \mathbb{k}^{n} into several components? Are the subsets/their complements simply connected?
(Some of these questions are not precise, as we did not define anything yet.)
i. $\left\{x^{2}=y^{2}\right\} \subset \mathbb{k}^{2}$
ii. $\left\{y^{2}=x^{3}\right\} \subset \mathbb{k}^{2}$
iii. $\left\{y^{p}=x^{p}\right\} \subset \mathbb{k}^{2} \quad$ iv. $\left\{y^{p}=x^{p}\right\} \subset \mathbb{k}^{3}$
v. $\{x y z=0\} \subset \mathbb{k}^{3} \quad$ vi. $\{x z=0=y z\} \subset \mathbb{k}^{3} \quad$ vii. $\left\{y^{2}=x^{2}+x^{3}\right\} \subset \mathbb{k}^{2} \quad$ viii. $\left\{y^{2}=x^{2} z\right\} \subset \mathbb{k}^{3}$

Here some sets are singular. Can you realize them as a result of an "unfortunate" projection of some smooth sets? (e.g. $\left\{x^{2}=y^{2}\right\}$ is the unfortunate projection of two disjoint lines in \mathbb{k}^{3})

An affine plane algebraic curve is the subset $C:=\{f(x, y)=0\} \subset \mathbb{k}^{2}$, where $f(x, y) \in \mathbb{k}[x, y]$. The degree of the curve is defined as the degree of the polynomial $f(x, y)$, the largest among the total degrees of monomials participating in $f(x, y)$.
(2) (a) Define the group action of $\mathbb{k}^{*}:=\mathbb{k} \backslash\{0\} \circlearrowright \mathbb{k}[x, y]$, by $f \rightarrow \lambda \cdot p$. Check that this gives a trivial action on curves.
(b) Consider the group actions $G L(2, \mathbb{k}) \circlearrowright \mathbb{k}^{2}$ (linear transformations) and $\mathbb{k}^{2} \circlearrowright \mathbb{k}^{2}$ (parallel translations). Prove that the group generated by these is a semi-direct product, $\mathbb{k}^{2} \rtimes G L(2, \mathbb{k})$.
(c) Write down the action of the group $\mathbb{k}^{*} \times \mathbb{k}^{2} \rtimes G L(2, \mathbb{k})$ on the set of algebraic curves. (What this action does to the equation $\{f(x, y)=0\}$?) Check that this action preserves the degree of curves.
(3) (Plane conics, i.e. curves of degree=2)
(a) Let $f(x, y) \in \mathbb{R}[x, y]$ be of degree 2 . Prove that by the action of $\mathbb{k}^{*} \times \mathbb{k}^{2} \rtimes G L(2, \mathbb{k})$ the curve $\{f(x, y)=0\} \subset \mathbb{R}^{2}$ can be brought to one (and only one) of the following forms: $y^{2} \pm x^{2}=0, y^{2} \pm x^{2}=1, x^{2}+y^{2}=-1, y=x^{2}$, $x^{2}=1, x^{2}=0$. Draw the corresponding curves. (These are called: canonical forms of plane conics.) Which of the curves are smooth? (as sets)
(b) Let $f(x, y) \in \mathbb{C}[x, y]$ be of degree 2 . What are the canonical forms in this case?
(c) Consider the rings $\mathbb{k}[x, y] /\left(x^{2}-y^{2}\right), \mathbb{k}[x, y] /\left(x^{2}-y^{2}+1\right), \mathbb{k}[x, y] /\left(x^{2}-1\right), \mathbb{k}[x, y] /\left(x^{2}\right)$. Which of them are integral domains? Normal rings? Rings without nilpotents? PID?
(4) (Plane cubics) Trace the change of the curve $\left\{y^{2}=x^{3}+x^{2}+\epsilon\right\} \subset \mathbb{R}^{2}$ for $\epsilon \in(-1,1)$. What happens at $\epsilon=0$? (You can use the computer. Google: "plane cubic", "nodal cubic")

Trace the change of the curve $\left\{y^{2}=x^{3}+\epsilon \cdot x^{2}\right\} \subset \mathbb{R}^{2}$ for $\epsilon \in(-1,1)$.
(5) (a) Let $C=\left\{x^{2}+y^{2}=1\right\} \subset \mathbb{k}^{2}$. Let $C \xrightarrow{\pi_{\Im}} \mathbb{k}^{1}$ be the projection onto the \hat{x}-axis. Describe the image, $\pi_{x}(C)$. How many preimages has a point $x \in \pi_{x}(C)$?
(b) Let $C=\{f(x, y)=0\} \subset \mathbb{C}^{2}$ for some polynomial $f(x, y) \in \mathbb{C}[x, y]$, of degree d. Prove that the image of the projection π_{x} is either a finite set of points or the \hat{x}-axis with a finite set of points removed. (e.g. $y\left(x^{2}-1\right)=1$.) Suppose for every point x of the \hat{x}-axis the number of preimages (in C) is finite. Prove that this number is generically d. (i.e. for all values of x, except for a finite subset, this number equal d.)

A projective plane algebraic curve is the subset $C:=\left\{f\left(x_{0}, x_{1}, x_{2}\right)=0\right\} \subset \mathbb{P}^{2}$. Here $\left[x_{0}: x_{1}: x_{2}\right]$ are the homogeneous coordinates, f is a homogeneous polynomial. $\operatorname{deg}(C):=\operatorname{deg}(f)$.
(6) (a) Prove that the group action $\mathbb{k}^{2} \rtimes G L(2, \mathbb{k})$ extends to an action on the set of projective plane curves. (Establish the embedding $\mathbb{k}^{2} \rtimes G L(2, \mathbb{k}) \subset \mathbb{P} G L(3, \mathbb{k})$.)
(b) Write down canonical forms of projective conics for $\mathbb{k}=\mathbb{C}$.
(c) Prove that every two lines intersect. (No lines are parallel)
(d) Prove that every line intersects every smooth conic in 2 points (counting with multiplicity). If one ignores the multiplicity, which lines intersect a given conic at one point only?
(e) Fix a smooth conic C, a line l, and a point $x \in C$. Take the projection $\mathbb{P}^{2} \backslash\{x\} \rightarrow l$. (A point $y \in \mathbb{P}^{2} \backslash\{x\}$ is sent to the intersection point of the lines $l, \overline{x y}$.) Check that this gives a (continuous/differentiable/analytic) isomorphism $C \backslash\{x\} \approx \mathbb{k}^{1}$.

