
Introduction to Algebraic Curves
201.2.4451. Summer 2019 (D.Kerner)

Homework 1

(1) (a) Let f ∈ k[x1, . . . , xn] and suppose f(a1, . . . , an) = 0 for any choice a ∈ kn. Prove: if k is an infinite field then
0 = f ∈ k[x]. What can happen over a finite field?

(b) Present the following subsets X ⊂ k
n as X = V (I), i.e. find (some) defining ideals. (Compute their radicals?)

i. X = {(1, 0), (−1, 0), (0, 1)} ⊂ k
2 ii. X = {y = 0} ∪ {(0, 1)} ⊂ k

2

iii. X = {x = 0 = y}∪{y = 0 = z}∪{x = 0 = z} ⊂ k
3 iv. The image of the map k

φ→ k
3, φ(t) = (t3, t4, t5).

(Here the defining equations can be presented as rank

[
x y z
y z x2

]
< 2. The presentation of equations via

minors is not an accident, but this is beyond our course)
(c) For each ideal I of part (b) consider the ring k[x1, . . . , xn]/I . For which cases is this ring an integral domain/

normal/local/semi-local/Artinian?
(d) For any collection of ideals {Iα} prove: V (∩Iα) = ∪V (Iα), V (

∑
Iα) = ∩V (Iα).

(e) Given V (I) ⊂ k
n and V (J) ⊂ k

m, prove that V (I) × V (J) ⊂ k
n × k

m is an algebraic subset. What is its
defining ideal?

(f) Suppose k is a finite field, show that any subset of kn is algebraic. Describe I(A1) ⊂ k[x].
(g) Which of the following subsets are algebraic?

i. {(cos(t), sin(t))| t ∈ C} ⊂ C2. ii. {r = sin(θ)} ⊂ R2 (in polar coordinates). iii. {y = sin(x)} ⊂ R2.
(h) Suppose k is an infinite field and f ∈ k[x1, . . . , xn] a non-constant polynomial, n ≥ 1. Prove: the set kn \ V (f)

is infinite. Suppose n ≥ 2 and k is algebraically closed, prove: the set V (f) is infinite.
(i) (Dis)prove: i. If I, J ⊂ k[x] then I ⊂ J iff V (I) ⊃ V (J). ii. I(X) is a radical ideal in k[x].

iii. V (I(X)) = X iv. I(V (J)) = J v. V (I(V (J))) = V (J) vi. I(V (I(X))) = I(X)

(2) (a) Go over all the details in the proof of Hilbert basis theorem. In particular check: for any ideal I ⊂ R[x] and the
set Ideg=j = {p ∈ I, deg(p) = j}, the subset

{
l.c.(Ideg=j), 0

}
⊂ R is an ideal. (l.c.=leading coefficients)

(b) Suppose R is Noetherian. Prove that the following rings are Noetherian:
i. R/J , for an ideal. ii. Rp, for an ideal p. iii. R[[x1, . . . , xn]]

(Here can use: for an ideal J ⊂ R the completion R̂(J) is Noetherian)
(c) Suppose R is Noetherian and S ⊂ R is a subring. Is S necessarily Noetherian? (Give a counterexample with

R = k[x, y].)
(d) Let C∞(U) be the ring of all the infinitely differentiable functions on U ⊂ Rn. Is this ring Noetherian?

(3) (a) Find/describe the irreducible components in the following cases. Does the decomposition depend on k being
algebraically closed?
i. V (y2 − xy − x2y + x3) ⊂ k

2. ii. V (x3 + x− x2y − y) ⊂ k
2. iii. V (xz, yz) ⊂ k

3

iv. V (x2 + y2 − 1, x2 − z2 − 1) ⊂ k
3, here k ∈ R,C v. V (xy − z2, x2 + y2 + z2) ⊂ k

3, here k ∈ R,C
vi. V

(
y2 − x(x− 1)(x− λ)

)
⊂ k

2, λ ∈ k, here k ∈ R,C.
(b) Let S be a non-empty collection of ideals in a Noetherian ring R. Prove that S has a minimal element, i.e.

there exists I ∈ S which is not properly contained in any other ideal of S.
(c) Prove: every proper ideal in a Noetherian ring is contained in a maximal ideal.

(d) Prove:
√
I ⊂ k[x] is prime iff V (I) is irreducible.

(e) Prove: any radical ideal J ⊂ k[x] admits the unique finite decomposition into primes, J = ∩pi.
(f) For which fields is kn irreducible?

(4) (a) Fix a polynomial map kn
φ→k

m, and consider its graph, Γφ :={(x, φ(x))}⊂kn+m. Write down the defining ideal

of Γφ and the coordinate ring k[Γφ]. Prove: k[Γφ] ≈ k[x1, . . . , xn]. Show the (natural) isomorphism Γφ
∼−→ k

n.

(b) Define the map k
1 φ→ k

n by φ(t) = (t, t2, . . . , tn). Denote the image by C. Write down the defining ideal of C

and the coordinate ring. Verify: k[C] ≈ k[t]. Prove the isomorphism of algebraic sets k1 ∼−→ C.
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Homework 2

(1) (a) For k infinite prove that the curve {x2 + y2 = 1} ⊂ k
2 has infinitely many points. (wiki: Pythagorean triple)

(b) Suppose k ⊆ R. Show that every algebraic subset of kn can be defined by one equation, {f(x) = 0} ⊂ k
n.

(c) Let p(x, y), q(x, y) ∈ k[x, y] be polynomials with no common factors. Prove: the set {p(x, y) = 0 = q(x, y) =
0} ⊂ k

2 is finite. (We have seen this in the class.)
(d) Let k = k̄. Prove: V (I) ⊂ k

n is finite iff dimk
k[x]/I < ∞. In this case: ](V (I)) ≤ dimk

k[x]/
√
I . What can

happen over R? (We did not prove this in the class. If you’re stuck, see [Fulton])

(2) Here we assume k = k̄.
(a) Suppose a curve C ⊂ k

2 of degree d has a point of multiplicity d. What are the possible irreducible decompo-
sitions of C?

(b) Fix some m =
∑
ri and pairwise independent linear forms {li(x, y)}. Prove: for any d > m there exists an

irreducible curve C ⊂ k
2, of degree d, whose tangent cone at the origin is {

∏
lri (x, y) = 0}. (Prove: if fm, fd

are homogeneous polynomials with no common factors then the polynomial fm + fd is irreducible.)

(3) (a) Let char(k) = 0. Show that an irreducible plane curve can have only a finite number of singular points. (This
holds also in positive characteristic, then need some additional arguments.)

(b) Let k = k̄. Identify the tangent cones of the following curves at all the singular points.

i. V
(

(x2 + y2 − 1)(x− 1)(y − x− 1)x
)

. ii. V
(

(x2 + y2)2 + 3x2y − y3
)

. iii. V
(

(x2 + y2)3 − 4x2y2
)

.

(c) Let k ∈ R,C and pt ∈ C ⊂ k
2 a smooth point. Prove that the tangent line is the limit of the secants:

T(C,pt) = lim
C3(x,y)→pt

(x, y), pt.

(d) Let k = C and pt ∈ C ⊂ C2 a singular point. Prove that the tangent cone, as a set, is the union of all the limits

of the secants: { lim
C3(x,y)→pt

(x, y), pt}. Does this hold also for k = R?

(e) Suppose φ � k
2 is a change of variables, i.e. a polynomial automorphism (x, y)→ (x̃(x, y), ỹ(x, y)). Prove that

T(C,pt) ⊂ k
2 and T(φ(C),φ(pt)) ⊂ k

2 are related by a linear transformation.

(4) (a) Let C = {
∏
li(x, y) = 0} ⊂ k

2, where li(x, y) are polynomials of degree 1, pairwise linearly independent. (Such
curves are called “line arrangements”.) Let pt ∈ C a smooth point. Identify O(C,pt).

(b) Let p ⊂ R be a prime ideal, check that Rp is a local ring. Check that the natural map R → Rp, a → a
1 is a

homomorphism of rings.
(c) Prove: if R is Noetherian/domain/PID then so is Rp. Show that the converse does not always hold.
(d) Let m ⊂ R a maximal ideal. Prove that the ring R/md is local, for any d > 0. Describe the invertible elements.
(e) Suppose R is local and m ⊂ R is the maximal ideal. Is Rm ≈ R?
(f) Suppose V (I) ⊂ k

n does not pass through the origin. What can you say about the image of I in k[x](x)? What
is the geometric interpretation?

(g) Fix an algebraic subset X ⊂ k
n and a polynomial automorphism φ � k

n. Prove: φ induces the isomorphisms

k[φ(X)]
φ∗

∼−→ k[X] and O(φ(X),φ(pt))

φ∗

∼−→ O(X,pt), for any pt ∈ X.
(h) Do all the local coordinate changes arrive from the global ones?

(5) (a) Let R be a DVR and t1, t2 two uniformizers. Prove: t1 = ut2 for some u ∈ R×. Prove that the valuation/order

function R
ord→ N ∪∞ does not depend on the choice of uniformizer.

(b) Check that the following rings are DVR. Give several examples of uniformizers.
i. k[[x]]. ii. k{x} (for k ∈ R,C). iii. k[x, y](x,y)/(y + y3 − x3) .
iv. k[x](∞) := {pq | p, q ∈ k[x], q 6= 0, deg(p) ≤ deg(q)}. (this is called: “localization at infinity”)

(c) Let R be a DVR with the maximal ideal m.

(i) Prove: m
j
/mj+1 is a vector space over a field R/m , for any j ≥ 0 . Compute dimm

j
/mj+1 .

(ii) For any f ∈ R prove: ord(f) = dimR/(f) .

(iii) Take the quotient field Frac(R). Suppose f ∈ Frac(R). Prove: if f 6∈ R then 1
f ∈ m ⊂ R.




