Introduction to Algebraic Curves

201.2.4451. Summer 2019 (D.Kerner)

Homework 1

- (1) (a) Let $f \in k[x_1, ..., x_n]$ and suppose $f(a_1, ..., a_n) = 0$ for any choice $\underline{a} \in k^n$. Prove: if k is an infinite field then $0 = f \in k[\underline{x}]$. What can happen over a finite field?
 - (b) Present the following subsets $X \subset \mathbb{k}^n$ as X = V(I), i.e. find (some) defining ideals. (Compute their radicals?) i. $X = \{(1,0), (-1,0), (0,1)\} \subset \mathbb{k}^2$ ii. $X = \{y = 0\} \cup \{(0,1)\} \subset \mathbb{k}^2$

iii. $X = \{x = 0 = y\} \cup \{y = 0 = z\} \cup \{x = 0 = z\} \subset \mathbb{k}^3$ iv. The image of the map $\mathbb{k} \xrightarrow{\phi} \mathbb{k}^3$, $\phi(t) = (t^3, t^4, t^5)$. (Here the defining equations can be presented as $rank \begin{bmatrix} x & y & z \\ y & z & x^2 \end{bmatrix} < 2$. The presentation of equations via minors is not an accident, but this is beyond our course)

- (c) For each ideal I of part (b) consider the ring $k[x_1, \ldots, x_n]/I$. For which cases is this ring an integral domain/normal/local/semi-local/Artinian?
- (d) For any collection of ideals $\{I_{\alpha}\}$ prove: $V(\cap I_{\alpha}) = \bigcup V(I_{\alpha}), V(\sum I_{\alpha}) = \cap V(I_{\alpha}).$
- (e) Given $V(I) \subset \mathbb{k}^n$ and $V(J) \subset \mathbb{k}^m$, prove that $V(I) \times V(J) \subset \mathbb{k}^n \times \mathbb{k}^m$ is an algebraic subset. What is its defining ideal?
- (f) Suppose k is a finite field, show that any subset of \mathbb{k}^n is algebraic. Describe $I(\mathbb{A}^1) \subset \mathbb{k}[x]$.
- (g) Which of the following subsets are algebraic?
 i. {(cos(t), sin(t))| t ∈ C} ⊂ C². ii. {r = sin(θ)} ⊂ R² (in polar coordinates). iii. {y = sin(x)} ⊂ R².
 (h) Suppose k is an infinite field and f ∈ k[x₁,...,x_n] a non-constant polynomial, n ≥ 1. Prove: the set kⁿ \ V(f)
- (i) Suppose k is an infinite field and $j \in \mathbb{K}[x_1, \dots, x_n]$ a non-constant polynomial, $n \geq 1$. Prove: the set $\mathbb{K} \setminus V(j)$ is infinite. (i) (Diploce $n \geq 2$ and \mathbb{K} is algebraically closed, prove: the set V(f) is infinite.
- (i) (Dis)prove: i. If $I, J \subset k[\underline{x}]$ then $I \subset J$ iff $V(I) \supset V(J)$. ii. I(X) is a radical ideal in $k[\underline{x}]$. iii. V(I(X)) = X iv. I(V(J)) = J v. V(I(V(J))) = V(J) vi. I(V(I(X))) = I(X)
- (2) (a) Go over all the details in the proof of Hilbert basis theorem. In particular check: for any ideal $I \subset R[x]$ and the set $I_{deg=j} = \{p \in I, deg(p) = j\}$, the subset $\{l.c.(I_{deg=j}), 0\} \subset R$ is an ideal. (l.c.=leading coefficients)
 - (b) Suppose R is Noetherian. Prove that the following rings are Noetherian: i. R/J, for an ideal. ii. $R_{\mathfrak{p}}$, for an ideal \mathfrak{p} . iii. $R[[x_1, \ldots, x_n]]$ (Here can use: for an ideal $J \subset R$ the completion $\hat{R}^{(J)}$ is Noetherian)
 - (c) Suppose R is Noetherian and $S \subset R$ is a subring. Is S necessarily Noetherian? (Give a counterexample with $R = \Bbbk[x, y]$.)
 - (d) Let $C^{\infty}(\mathcal{U})$ be the ring of all the infinitely differentiable functions on $\mathcal{U} \subset \mathbb{R}^n$. Is this ring Noetherian?

(3) (a) Find/describe the irreducible components in the following cases. Does the decomposition depend on k being algebraically closed?

- i. $V(y^2 xy x^2y + x^3) \subset \mathbb{k}^2$. ii. $V(x^3 + x x^2y y) \subset \mathbb{k}^2$. iii. $V(xz, yz) \subset \mathbb{k}^3$ iv. $V(x^2 + y^2 - 1, x^2 - z^2 - 1) \subset \mathbb{k}^3$, here $\mathbb{k} \in \mathbb{R}, \mathbb{C}$ v. $V(xy - z^2, x^2 + y^2 + z^2) \subset \mathbb{k}^3$, here $\mathbb{k} \in \mathbb{R}, \mathbb{C}$ vi. $V(y^2 - x(x - 1)(x - \lambda)) \subset \mathbb{k}^2, \lambda \in \mathbb{k}$, here $\mathbb{k} \in \mathbb{R}, \mathbb{C}$.
- (b) Let \mathfrak{S} be a non-empty collection of ideals in a Noetherian ring R. Prove that \mathfrak{S} has a minimal element, i.e. there exists $I \in \mathfrak{S}$ which is not properly contained in any other ideal of \mathfrak{S} .
- (c) Prove: every proper ideal in a Noetherian ring is contained in a maximal ideal.
- (d) Prove: $\sqrt{I} \subset \mathbb{k}[\underline{x}]$ is prime iff V(I) is irreducible.
- (e) Prove: any radical ideal $J \subset \Bbbk[\underline{x}]$ admits the unique finite decomposition into primes, $J = \cap \mathfrak{p}_i$.
- (f) For which fields is \mathbb{k}^n irreducible?
- (4) (a) Fix a polynomial map $\mathbb{k}^n \xrightarrow{\phi} \mathbb{k}^m$, and consider its graph, $\Gamma_{\phi} := \{(\underline{x}, \phi(\underline{x}))\} \subset \mathbb{k}^{n+m}$. Write down the defining ideal of Γ_{ϕ} and the coordinate ring $\mathbb{k}[\Gamma_{\phi}]$. Prove: $\mathbb{k}[\Gamma_{\phi}] \approx \mathbb{k}[x_1, \dots, x_n]$. Show the (natural) isomorphism $\Gamma_{\phi} \xrightarrow{\sim} \mathbb{k}^n$.
 - (b) Define the map $\mathbb{k}^1 \xrightarrow{\phi} \mathbb{k}^n$ by $\phi(t) = (t, t^2, \dots, t^n)$. Denote the image by C. Write down the defining ideal of C and the coordinate ring. Verify: $\mathbb{k}[C] \approx \mathbb{k}[t]$. Prove the isomorphism of algebraic sets $\mathbb{k}^1 \xrightarrow{\sim} C$.

Introduction to Algebraic Curves

201.2.4451. Summer 2019 (D.Kerner)

Homework 2

- (1) (a) For k infinite prove that the curve $\{x^2 + y^2 = 1\} \subset k^2$ has infinitely many points. (wiki: Pythagorean triple)
 - (b) Suppose $\mathbb{k} \subseteq \mathbb{R}$. Show that every algebraic subset of \mathbb{k}^n can be defined by one equation, $\{f(\underline{x}) = 0\} \subset \mathbb{k}^n$.
 - (c) Let $p(x,y), q(x,y) \in \mathbb{K}[x,y]$ be polynomials with no common factors. Prove: the set $\{p(x,y) = 0 = q(x,y) = 0\}$ $0\} \subset \mathbb{k}^2$ is finite. (We have seen this in the class.)
 - (d) Let $\mathbb{k} = \overline{\mathbb{k}}$. Prove: $V(I) \subset \mathbb{k}^n$ is finite iff $\dim_{\mathbb{k}} \overline{\mathbb{k}[x]}/I < \infty$. In this case: $\#(V(I)) \leq \dim_{\mathbb{k}} \overline{\mathbb{k}[x]}/\sqrt{I}$. What can happen over \mathbb{R} ? (We did not prove this in the class. If you're stuck, see [Fulton])
- (2) Here we assume $\mathbf{k} = \bar{\mathbf{k}}$.
 - (a) Suppose a curve $C \subset k^2$ of degree d has a point of multiplicity d. What are the possible irreducible decompositions of C?
 - (b) Fix some $m = \sum r_i$ and pairwise independent linear forms $\{l_i(x, y)\}$. Prove: for any d > m there exists an irreducible curve $C \subset \mathbb{k}^2$, of degree d, whose tangent cone at the origin is $\{\prod l_i^r(x,y)=0\}$. (Prove: if f_m, f_d are homogeneous polynomials with no common factors then the polynomial $f_m + f_d$ is irreducible.)
- (3) (a) Let char(k) = 0. Show that an irreducible plane curve can have only a finite number of singular points. (This holds also in positive characteristic, then need some additional arguments.)
 - (b) Let $\mathbf{k} = \bar{\mathbf{k}}$. Identify the tangent cones of the following curves at all the singular points.

i. $V((x^2+y^2-1)(x-1)(y-x-1)x)$. ii. $V((x^2+y^2)^2+3x^2y-y^3)$. iii. $V((x^2+y^2)^3-4x^2y^2)$. (c) Let $\mathbb{k} \in \mathbb{R}, \mathbb{C}$ and $pt \in C \subset \mathbb{k}^2$ a smooth point. Prove that the tangent line is the limit of the secants:

$$T_{(C,pt)} = \lim_{C \ni (x,y) \to pt} \overline{(x,y), pt}.$$

- (d) Let $\mathbb{k} = \mathbb{C}$ and $pt \in C \subset \mathbb{C}^2$ a singular point. Prove that the tangent cone, as a set, is the union of all the limits of the secants: $\{\lim_{C \ni (x,y) \to pt} \overline{(x,y), pt}\}$. Does this hold also for $\mathbb{k} = \mathbb{R}$?
- (e) Suppose $\phi \circlearrowright \mathbb{k}^2$ is a change of variables, i.e. a polynomial automorphism $(x, y) \to (\tilde{x}(x, y), \tilde{y}(x, y))$. Prove that $T_{(C,pt)} \subset \mathbb{k}^2$ and $T_{(\phi(C),\phi(pt))} \subset \mathbb{k}^2$ are related by a linear transformation.
- (4) (a) Let $C = \{\prod l_i(x, y) = 0\} \subset k^2$, where $l_i(x, y)$ are polynomials of degree 1, pairwise linearly independent. (Such curves are called "line arrangements".) Let $pt \in C$ a smooth point. Identify $\mathcal{O}_{(C,pt)}$.
 - (b) Let $\mathfrak{p} \subset R$ be a prime ideal, check that $R_{\mathfrak{p}}$ is a local ring. Check that the natural map $R \to R_{\mathfrak{p}}, a \to \frac{a}{1}$ is a homomorphism of rings.
 - (c) Prove: if R is Noetherian/domain/PID then so is R_{p} . Show that the converse does not always hold.
 - (d) Let $\mathfrak{m} \subset R$ a maximal ideal. Prove that the ring R/\mathfrak{m}^d is local, for any d > 0. Describe the invertible elements.
 - (e) Suppose R is local and $\mathfrak{m} \subset R$ is the maximal ideal. Is $R_{\mathfrak{m}} \approx R$?
 - (f) Suppose $V(I) \subset \mathbb{k}^n$ does not pass through the origin. What can you say about the image of I in $\mathbb{k}[\underline{x}]_{(x)}$? What is the geometric interpretation?
 - (g) Fix an algebraic subset $X \subset \mathbb{k}^n$ and a polynomial automorphism $\phi \oslash \mathbb{k}^n$. Prove: ϕ induces the isomorphisms $\Bbbk[\phi(X)] \xrightarrow{\phi^*} \&[X] \text{ and } \mathcal{O}_{(\phi(X),\phi(pt))} \xrightarrow{\phi^*} \mathcal{O}_{(X,pt)}, \text{ for any } pt \in X.$

 - (h) Do all the local coordinate changes arrive from the global ones?
- (5) (a) Let R be a DVR and t_1, t_2 two uniformizers. Prove: $t_1 = ut_2$ for some $u \in \mathbb{R}^{\times}$. Prove that the valuation/order function $R \xrightarrow{ord} \mathbb{N} \cup \infty$ does not depend on the choice of uniformizer.
 - (b) Check that the following rings are DVR. Give several examples of uniformizers. iii. $k[x,y]_{(x,y)}/(y+y^3-x^3)$. i. k[[x]]. ii. $\Bbbk\{x\}$ (for $\Bbbk \in \mathbb{R}, \mathbb{C}$).

iv. $\mathbb{k}[x]_{(\infty)} := \{ \frac{p}{q} | p, q \in \mathbb{k}[x], q \neq 0, deg(p) \leq deg(q) \}.$ (this is called: "localization at infinity") (c) Let R be a DVR with the maximal ideal \mathfrak{m} .

- (i) Prove: $\mathfrak{m}^{j}/\mathfrak{m}^{j+1}$ is a vector space over a field R/\mathfrak{m} , for any $j \geq 0$. Compute $\dim \mathfrak{m}^{j}/\mathfrak{m}^{j+1}$.
- (ii) For any $f \in R$ prove: ord(f) = dim R/(f).
- (iii) Take the quotient field Frac(R). Suppose $f \in Frac(R)$. Prove: if $f \notin R$ then $\frac{1}{f} \in \mathfrak{m} \subset R$.