Introduction to Algebraic Curves

201.2.4451. Summer 2019 (D.Kerner)

Homework 10

(1) (a) Go over all the details of the definition of $Bl_0 \mathbb{k}^n \xrightarrow{\pi} \mathbb{k}^n$. Cover $Bl_0(\mathbb{k}^n)$ by charts, each isomorphic to \mathbb{k}^n . Write down the transition functions. Prove that the exceptional locus of π is a hypersurface in $Bl_0 \mathbb{k}^n$ and is isomorphic to \mathbb{P}^{n-1} .

Note: for n = 2, $\mathbb{k} = \mathbb{R}$, in both coordinate charts the defining equations of $Bl_0(\mathbb{R}^2)$ resemble those of the saddle point of calculus, e.g. $y = x \frac{\sigma_y}{\sigma_x}$. Use this to visualize $Bl_0(\mathbb{R}^2)$.

- (b) Realize $Bl_0(\mathbb{k}^n)$ as the closure of the graph of the projection $\mathbb{k}^n \setminus \{0\} \xrightarrow{f} \mathbb{P}(\mathbb{k}^{n-1}), f(\underline{x}) = [\underline{x}]$. And similarly for $Bl_0\mathbb{P}^n$. Here the target $\mathbb{P}(\mathbb{k}^{n-1})$ can be thought as the infinite hyperplane in \mathbb{P}^n . Accordingly, $Bl_0\mathbb{P}^n$ is covered by non-intersecting lines.
- (c) Let $l_1, l_2 \subset \mathbb{k}^n$ be two (distinct) lines through the origin. What are their strict transforms, $\tilde{l}_1, \tilde{l}_2 \subset Bl_0(\mathbb{k}^n)$? Compare the intersection multiplicities $i(l_1, l_2), i(\tilde{l}_1, \tilde{l}_2)$.
- (d) Can you imagine some version of Bezout theorem for $Bl_0\mathbb{P}^2$?
- (e) Can you compute $H_*(Bl_0\mathbb{P}^2_{\mathbb{C}},\mathbb{Z})$?
- (2) (a) Write down the defining equation(s) of the total and strict transforms of the curve singularities $V(x^p y^p)$, $V(y^p x^q)$, p < q, under the blowup $Bl_0(\Bbbk^2) \xrightarrow{\pi} \Bbbk^2$.
 - (b) Prove: the strict transform of the union of curves is the union of the strict transforms, $(\cup C_i, 0) = \cup (\tilde{C}_i, 0)$.
 - (c) Suppose an algebraic/holomorphic map of the formal germs, $(\Bbbk^1, 0) \to (C, 0)$, is 1:1 an surjective. Prove that this corresponds to the embedding $\mathcal{O}_{(C,0)} \subset \Bbbk[[t]]$ such that $\dim_{\Bbbk} \Bbbk[[t]]/_{\mathcal{O}_{(C,0)}} < \infty$.
 - (d) Given a branch (C, 0), with tangent \hat{y} , and the parametrization (x(t), y(t)). Prove that the parametrization of \tilde{C} is $(x(t), \frac{y(t)}{x(t)})$.
 - (e) Go over all the detail of the resolution for branches. In the lecture we skipped the case: after several blowups one gets to q pj = p. What should be done in this case?
 - (f) Given two smooth curve germs, $(C_1, 0), (C_2, 0) \subset (k^2, 0)$, with tangency of order k, i.e. $i_0(C_1, C_2) = k$. What is the minimal number of blowups needed to separate these curves?
- (3) (a) Draw the embedded resolution of the singularities $y^p = x^p$, $y^p = x^{pk}$, $y^p = x^{p+1}$.
 - (b) Resolve the singularity $y^5 + y^2x^2 + x^5 = 0$ and compute its Milnor number.
- (4) (a) Prove that any algebraic/holomorphic map $\mathbb{P}^1 \xrightarrow{f} \mathbb{P}^1$ is presentable as $(z_0 : z_1) \to (p(z_0, z_1) : q(z_0, z_1))$, for some homogeneous polynomials of the same degree d. What is the degree of this map?
 - (b) An invertible algebraic/holomorphic map $C \xrightarrow{f} C$ is called an automorphism. (Prove that f is an automorphism iff its degree is 1.) The set of all the automorphism of a curve/Riemann surface is a group, Aut(C).
 - (c) Fix a matrix $A \in GL(2, \mathbb{k})$. Prove that the map $(z_0 : z_1) \to A(z_0 : z_1)$ defines an automorphism of \mathbb{P}^1 . Prove that this correspondence defines a surjective homomorphism of groups $GL(2, \mathbb{k}) \to Aut(\mathbb{P}^1)$. What is the kernel?
 - (d) Fix a compact Riemann surface X and a meromorphic function f. Prove that f has at least one zero and at least one pole. Prove: if f has precisely one pole (or zero) then it is an isomorphism $f: X \xrightarrow{\sim} \mathbb{P}^1$.
 - (e) Suppose a compact Riemann surface X admits a meromorphic function f with precisely one simple pole. Prove: $f: X \xrightarrow{\sim} \mathbb{P}^1$.
- (5) Let $C_1, C_2 \subset \mathbb{P}^2$ be projective curves of degree d. Suppose $C_1 \cap C_2 = d^2$ distinct points, of which $m \cdot d$ points lie on a curve of degree m < d that is not a component of C_1, C_2 . Prove: the other (d-m)d points lie on a curve of degree (d-m).