Introduction to Algebraic Curves

201.2.4451. Summer 2019 (D.Kerner)

Homework 10

(1) (a) Go over all the details of the definition of $B l_{0} \mathbb{k}^{n} \xrightarrow{\pi} \mathbb{k}^{n}$. Cover $B l_{0}\left(\mathbb{k}^{n}\right)$ by charts, each isomorphic to \mathbb{k}^{n}. Write down the transition functions. Prove that the exceptional locus of π is a hypersurface in $B l_{0} \mathbb{k}^{n}$ and is isomorphic to \mathbb{P}^{n-1}.
Note: for $n=2, \mathbb{k}=\mathbb{R}$, in both coordinate charts the defining equations of $B l_{0}\left(\mathbb{R}^{2}\right)$ resemble those of the saddle point of calculus, e.g. $y=x \frac{\sigma_{y}}{\sigma_{x}}$. Use this to visualize $B l_{0}\left(\mathbb{R}^{2}\right)$.
(b) Realize $B l_{0}\left(\mathbb{k}^{n}\right)$ as the closure of the graph of the projection $\mathbb{k}^{n} \backslash\{0\} \xrightarrow{f} \mathbb{P}\left(\mathbb{k}^{n-1}\right), f(\underline{x})=[\underline{x}]$. And similarly for $B l_{0} \mathbb{P}^{n}$. Here the target $\mathbb{P}\left(\mathbb{k}^{n-1}\right)$ can be thought as the infinite hyperplane in \mathbb{P}^{n}. Accordingly, $B l_{0} \mathbb{P}^{n}$ is covered by non-intersecting lines.
(c) Let $l_{1}, l_{2} \subset \mathbb{k}^{n}$ be two (distinct) lines through the origin. What are their strict transforms, $\tilde{l}_{1}, \tilde{l}_{2} \subset B l_{0}\left(\mathbb{k}^{n}\right)$? Compare the intersection multiplicities $i\left(l_{1}, l_{2}\right), i\left(\tilde{l}_{1}, \tilde{l}_{2}\right)$.
(d) Can you imagine some version of Bezout theorem for $B l_{0} \mathbb{P}^{2}$?
(e) Can you compute $H_{*}\left(B l_{0} \mathbb{P}_{\mathbb{C}}^{2}, \mathbb{Z}\right)$?
(2) (a) Write down the defining equation(s) of the total and strict transforms of the curve singularities $V\left(x^{p}-y^{p}\right)$, $V\left(y^{p}-x^{q}\right), p<q$, under the blowup $B l_{0}\left(\mathbb{k}^{2}\right) \xrightarrow{\pi} \mathbb{k}^{2}$.
(b) Prove: the strict transform of the union of curves is the union of the strict transforms, $\left(\widetilde{\cup C_{i}, 0}\right)=\cup\left(\tilde{C}_{i}, 0\right)$.
(c) Suppose an algebraic/holomorphic map of the formal germs, $\left(\mathbb{k}^{1}, 0\right) \rightarrow(C, 0)$, is $1: 1$ an surjective. Prove that this corresponds to the embedding $\mathcal{O}_{(C, 0)} \subset \mathbb{k}[[t]]$ such that $\operatorname{dim}_{\mathbb{k}} \mathbb{k}[[t]] / \mathcal{O}_{(C, 0)}<\infty$.
(d) Given a branch $(C, 0)$, with tangent \hat{y}, and the parametrization $(x(t), y(t))$. Prove that the parametrization of \tilde{C} is $\left(x(t), \frac{y(t)}{x(t)}\right)$.
(e) Go over all the detail of the resolution for branches. In the lecture we skipped the case: after several blowups one gets to $q-p j=p$. What should be done in this case?
(f) Given two smooth curve germs, $\left(C_{1}, 0\right),\left(C_{2}, 0\right) \subset\left(\mathbb{k}^{2}, 0\right)$, with tangency of order k, i.e. $i_{0}\left(C_{1}, C_{2}\right)=k$. What is the minimal number of blowups needed to separate these curves?
(3) (a) Draw the embedded resolution of the singularities $y^{p}=x^{p}, y^{p}=x^{p k}, y^{p}=x^{p+1}$.
(b) Resolve the singularity $y^{5}+y^{2} x^{2}+x^{5}=0$ and compute its Milnor number.
(4) (a) Prove that any algebraic/holomorphic map $\mathbb{P}^{1} \xrightarrow{f} \mathbb{P}^{1}$ is presentable as $\left(z_{0}: z_{1}\right) \rightarrow\left(p\left(z_{0}, z_{1}\right): q\left(z_{0}, z_{1}\right)\right)$, for some homogeneous polynomials of the same degree d. What is the degree of this map?
(b) An invertible algebraic/holomorphic map $C \xrightarrow{f} C$ is called an automorphism. (Prove that f is an automorphism iff its degree is 1.) The set of all the automorphism of a curve/Riemann surface is a group, $\operatorname{Aut}(C)$.
(c) Fix a matrix $A \in G L(2, \mathbb{k})$. Prove that the map $\left(z_{0}: z_{1}\right) \rightarrow A\left(z_{0}: z_{1}\right)$ defines an automorphism of \mathbb{P}^{1}. Prove that this correspondence defines a surjective homomorphism of groups $G L\left(2, \mathbb{k}_{k}\right) \rightarrow \operatorname{Aut}\left(\mathbb{P}^{1}\right)$. What is the kernel?
(d) Fix a compact Riemann surface X and a meromorphic function f. Prove that f has at least one zero and at least one pole. Prove: if f has precisely one pole (or zero) then it is an isomorphism $f: X \xrightarrow{\sim} \mathbb{P}^{1}$.
(e) Suppose a compact Riemann surface X admits a meromorphic function f with precisely one simple pole. Prove: $f: X \xrightarrow{\sim} \mathbb{P}^{1}$.
(5) Let $C_{1}, C_{2} \subset \mathbb{P}^{2}$ be projective curves of degree d. Suppose $C_{1} \cap C_{2}=d^{2}$ distinct points, of which $m \cdot d$ points lie on a curve of degree $m<d$ that is not a component of C_{1}, C_{2}. Prove: the other $(d-m) d$ points lie on a curve of degree $(d-m)$.

