Introduction to Algebraic Curves

201.2.4451. Summer-Fall 2019 (D.Kerner)

Homework 11

X is either a smooth projective algebraic curve (over $\mathbf{k} = \bar{\mathbf{k}}$) or a compact Riemann surface.

- Notations: $L(D) := H^0(\mathcal{O}_X(D), X), \ l(D) := h^0(\mathcal{O}_X(D)).$
- (1) (a) Let $X \subset \mathbb{P}^n$ an $\Bbbk[X]$ the homogeneous coordinate ring. Let $0 \neq f \in \Bbbk[X]$. Prove: $ord_{pt}(f)$ is well defined (and finite) for any $pt \in X$. (Even though f is not a function on X.)
 - (b) Let $0 \neq f \in k(X), \mathcal{M}_X, k[X]$. Check that div(f) is a finite sum.
 - (c) We have proved in the class: if $0 \neq f \in k(X)$, \mathcal{M}_X then deg(div(f)) = 0. Go over all the details of the proof.
 - (d) Given a morphism $X \xrightarrow{\pi} C \subset \mathbb{P}^2$, prove: $D \equiv D' \in Div(X)$ iff $D + div(\pi^*g) = D' + div(\pi^*g')$ for some $V(g), V(g') \subset \mathbb{P}^2$ of the same degree.
- (2) (a) Fix a birational model, $X \xrightarrow{birat} \mathbb{P}^2$, so that $\Bbbk(X) \approx \Bbbk(C)$. Then any element of $\Bbbk(C)$ is presentable in the form $\frac{p}{q}|_C$, where $p,q \in \Bbbk[x,y,z]$ are homogeneous, of the same degree. Does this imply that for any $g \in \Bbbk(X)$ the total number of zeros/poles of g (counted with multiplicity) is a multiple of deg(C)?
 - (b) Let $X = \{y^2 z = x(x-z)(x-\lambda \cdot z)\} \subset \mathbb{P}^2, 0, 1 \neq \lambda \in \mathbb{k}$. Compute $div(\frac{x}{z}|_X), div(\frac{y}{z}|_X)$.
 - (c) (Corollary of Noether's AF + BG) Let $X \subset \mathbb{P}^2$ and $D_1 \equiv D_2 \in Div(X)$.
 - (i) Prove: $div(q_1) + D_1 = div(q_2) + D_2$, for some $q_1, q_2 \in k[x, y, z]$.
 - (ii) Take any $p_1 \in \mathbb{k}[x, y, z]$ such that $D_1 \leq div(p_1)$. Apply Noether's theorem to $V(p_1q_1), V(q_2), X \subset \mathbb{P}^2$ to get: $div(p_1q_1) = div(p_2q_2)$, for some $p_2 \in \mathbb{k}[x, y, z]$.
 - (iii) Prove: if $D_1 \leq div(p_1)$ for some $p_1 \in \mathbb{k}[x, y, z]$, then $div(p_1) D_1 = div(p_2) D_2$, for some $p_2 \in \mathbb{k}[x, y, z]$. (i) Let $C \subset \mathbb{P}^2$ a smooth cubic and $pt_1, pt_2 \in C$. Prove: $C \not\approx \mathbb{P}^1$. (d)
 - (You can either use question 3(d) or verify: $pt_1 \equiv pt_2$ iff $pt_1 = pt_2$.) (ii) Demonstrate a basis of L(D) for deg(D) = 1, 2, 3. ('Explicit', as in question 4(a).) What happens when the points of D are non-distinct? For deg(D) = 3 what happens when the points of D lie on a line?
 - (iii) Let $pt \in C$ a flex. Demonstrate a basis of $L(3n \cdot pt)$, for any $n \geq 1$. (Conclude again that g(C) = 1.)
- (3) (a) Let $D = \sum_{finite} n_i p t_i \in Div(\mathbb{P}^1)$. Write down an explicit basis of L(D).
 - (b) Let $C \subset \mathbb{P}^2$ be a singular, irreducible cubic and $p, q \in C$ some smooth points. Prove: $p \equiv q$.
 - (c) Suppose $p \equiv q$ for some distinct points $p, q \in X$. Prove: $X \xrightarrow{\sim} \mathbb{P}^1$.

(d)

- (i) Let $0 \le D = \sum n_{pt} pt \in Div(X)$ and $S_D = \{pt \in X | n_{pt} > 0\}$. Prove: $L(D) \subseteq \mathcal{O}_X(X \setminus S_D)$.
- (ii) Fix an open subset $\emptyset \neq \mathcal{U} \subsetneq X$. Prove: $\dim_{\mathbb{K}}(\mathcal{O}_X(\mathcal{U})) = \infty$. (iii) Prove: l(D) > 0 iff $D \equiv D'$ where D' is effective (i.e. $D' = \sum n_{pt} pt$ with $n_{pt} \ge 0$).
- (iv) Prove: for any $D_1, D_2 \in Div(X)$ with $D_1 < D_2$ holds: $l(D_2) \le l(D_1) + deg(D_2) deg(D_1)$.
- (v) For g(X) = 1 prove: l(D) = deg(D), for any D with $deg(D) \ge 1$.
- (vi) Let l(D) > 0 and $0 \neq f \in L(D)$. Show: $f \in L(D pt)$ for at most a finite number of points on X.
- (vii) Thus l(D pt) = l(D) 1 for "almost all" points of X (i.e. except for a finite subset).
- (viii) Prove: if $l(pt_1 + pt_2) = 2$ for any $pt_1, pt_2 \in X$ then g(X) = 1. (Achtung: this does not hold if 'any' is replaced by 'some'.)
- (4) (a) Let $Div_0(X) < Div(X)$ be the subgroup of all the divisors of total degree zero. Prove: $k(X) \setminus \{0\} \xrightarrow{div} Div_0(X)$ is a homomorphism of abelian groups. Describe its kernel.
 - (b) Check that the relation $D \equiv D'$ on divisors is indeed an equivalence relation. Check that this relation is compatible with the group structure of $Div_0(X)$, Div(X) and the set $\{D \mid D \equiv 0\}$ is a subgroup of $Div_0(X)$.
 - (c) Check that $Div_0(X)/_{\equiv}$, $Div(X)/_{\equiv}$ are abelian groups. Prove: $Div(\mathbb{P}^1)/_{\equiv} \approx \mathbb{Z}$. Prove that $Div_0(X_{g=1})/_{\equiv}$ is not finitely generated.
 - (d) Fix a smooth cubic $C \subset \mathbb{P}^2$ and a point $p \in C$, this defines the group structure. Prove that the map $x \to x p$ is an isomorphism of groups, $(C, +, p) \approx Div_0(X_{g=1})/_{\equiv}$.
- (5) Finally we can prove: any irreducible complex algebraic curve is connected in the classical topology.
 - (a) Prove: it is enough to consider only smooth projective (complex, irreducible) curves. (By desingularization.)
 - (b) Let X as above. Prove: X has no isolated points. (Map X birationally into \mathbb{P}^2)
 - (c) Suppose X as above has two connected components, X_1, X_2 . Both are compact (in the classical topology). Fix a point $pt \in X_1$ and take some $f \in \mathcal{M}_X(X)$ that has a pole only at pt. (Why does such a function exist?) Then $f|_{X_2}$ is a holomorphic function on a compact set, thus is a constant. Thus we can assume $f|_{X_2} = 0$. But then $X_2 \subset X$ is an algebraic subset.
 - (d) Prove: any complex projective curve, $C \subset \mathbb{P}^2$, (not necessarily irreducible) is connected. Does this hold also for an affine curve $C \subset \mathbb{C}^2$?