Introduction to Algebraic Curves

201.2.4451. Summer-Fall 2019 (D.Kerner)

Homework 11

X is either a smooth projective algebraic curve (over $\mathbb{k}=\overline{\mathbb{k}}$) or a compact Riemann surface.
Notations: $L(D):=H^{0}\left(\mathcal{O}_{X}(D), X\right), l(D):=h^{0}\left(\mathcal{O}_{X}(D)\right)$.
(1) (a) Let $X \subset \mathbb{P}^{n}$ an $\mathbb{k}[X]$ the homogeneous coordinate ring. Let $0 \neq f \in \mathbb{k}[X]$. Prove: $\operatorname{ord}_{p t}(f)$ is well defined (and finite) for any $p t \in X$. (Even though f is not a function on X.)
(b) Let $0 \neq f \in \mathbb{k}(X), \mathcal{M}_{X}, \mathbb{k}[X]$. Check that $\operatorname{div}(f)$ is a finite sum.
(c) We have proved in the class: if $0 \neq f \in \mathbb{k}(X), \mathcal{M}_{X}$ then $\operatorname{deg}(\operatorname{div}(f))=0$. Go over all the details of the proof.
(d) Given a morphism $X \xrightarrow{\pi} C \subset \mathbb{P}^{2}$, prove: $D \equiv D^{\prime} \in \operatorname{Div}(X)$ iff $D+\operatorname{div}\left(\pi^{*} g\right)=D^{\prime}+\operatorname{div}\left(\pi^{*} g^{\prime}\right)$ for some $V(g), V\left(g^{\prime}\right) \subset \mathbb{P}^{2}$ of the same degree.
(2) (a) Fix a birational model, $X \xrightarrow{\text { birat }} \mathbb{P}^{2}$, so that $\mathbb{k}(X) \approx \mathbb{k}(C)$. Then any element of $\mathbb{k}(C)$ is presentable in the form $\left.\frac{p}{q}\right|_{C}$, where $p, q \in \mathbb{k}[x, y, z]$ are homogeneous, of the same degree. Does this imply that for any $g \in \mathbb{k}(X)$ the total number of zeros/poles of g (counted with multiplicity) is a multiple of $\operatorname{deg}(C)$?
(b) Let $X=\left\{y^{2} z=x(x-z)(x-\lambda \cdot z)\right\} \subset \mathbb{P}^{2}, 0,1 \neq \lambda \in \mathbb{k}$. Compute $\operatorname{div}\left(\left.\frac{x}{z}\right|_{X}\right), \operatorname{div}\left(\left.\frac{y}{z}\right|_{X}\right)$.
(c) (Corollary of Noether's $A F+B G)$ Let $X \subset \mathbb{P}^{2}$ and $D_{1} \equiv D_{2} \in \operatorname{Div}(X)$.
(i) Prove: $\operatorname{div}\left(q_{1}\right)+D_{1}=\operatorname{div}\left(q_{2}\right)+D_{2}$, for some $q_{1}, q_{2} \in \mathbb{k}[x, y, z]$.
(ii) Take any $p_{1} \in \mathbb{k}[x, y, z]$ such that $D_{1} \leq \operatorname{div}\left(p_{1}\right)$. Apply Noether's theorem to $V\left(p_{1} q_{1}\right), V\left(q_{2}\right), X \subset \mathbb{P}^{2}$ to get: $\operatorname{div}\left(p_{1} q_{1}\right)=\operatorname{div}\left(p_{2} q_{2}\right)$, for some $p_{2} \in \mathbb{k}[x, y, z]$.
(iii) Prove: if $D_{1} \leq \operatorname{div}\left(p_{1}\right)$ for some $p_{1} \in \mathbb{k}[x, y, z]$, then $\operatorname{div}\left(p_{1}\right)-D_{1}=\operatorname{div}\left(p_{2}\right)-D_{2}$, for some $p_{2} \in \mathbb{k}[x, y, z]$.
(d) (i) Let $C \subset \mathbb{P}^{2}$ a smooth cubic and $p t_{1}, p t_{2} \in C$. Prove: $C \not \approx \mathbb{P}^{1}$. (You can either use question $3(\mathrm{~d})$ or verify: $p t_{1} \equiv p t_{2}$ iff $p t_{1}=p t_{2}$.)
(ii) Demonstrate a basis of $L(D)$ for $\operatorname{deg}(D)=1,2,3$. ('Explicit', as in question 4(a).) What happens when the points of D are non-distinct? For $\operatorname{deg}(D)=3$ what happens when the points of D lie on a line?
(iii) Let $p t \in C$ a flex. Demonstrate a basis of $L(3 n \cdot p t)$, for any $n \geq 1$. (Conclude again that $g(C)=1$.)
(3) (a) Let $D=\sum_{f i n i t e} n_{i} p t_{i} \in \operatorname{Div}\left(\mathbb{P}^{1}\right)$. Write down an explicit basis of $L(D)$.
(b) Let $C \subset \mathbb{P}^{2}$ be a singular, irreducible cubic and $p, q \in C$ some smooth points. Prove: $p \equiv q$.
(c) Suppose $p \equiv q$ for some distinct points $p, q \in X$. Prove: $X \xrightarrow{\sim} \mathbb{P}^{1}$.
(d) (i) Let $0 \leq D=\sum n_{p t} p t \in \operatorname{Div}(X)$ and $S_{D}=\left\{p t \in X \mid n_{p t}>0\right\}$. Prove: $L(D) \subseteq \mathcal{O}_{X}\left(X \backslash S_{D}\right)$.
(ii) Fix an open subset $\varnothing \neq \mathcal{U} \subsetneq X$. Prove: $\operatorname{dim}_{\mathrm{k}}\left(\mathcal{O}_{X}(\mathcal{U})\right)=\infty$.
(iii) Prove: $l(D)>0$ iff $D \equiv D^{\prime}$ where D^{\prime} is effective (i.e. $D^{\prime}=\sum n_{p t} p t$ with $n_{p t} \geq 0$).
(iv) Prove: for any $D_{1}, D_{2} \in \operatorname{Div}(X)$ with $D_{1}<D_{2}$ holds: $l\left(D_{2}\right) \leq l\left(D_{1}\right)+\operatorname{deg}\left(D_{2}\right)-\operatorname{deg}\left(D_{1}\right)$.
(v) For $g(X)=1$ prove: $l(D)=\operatorname{deg}(D)$, for any D with $\operatorname{deg}(D) \geq 1$.
(vi) Let $l(D)>0$ and $0 \neq f \in L(D)$. Show: $f \in L(D-p t)$ for at most a finite number of points on X.
(vii) Thus $l(D-p t)=l(D)-1$ for "almost all" points of X (i.e. except for a finite subset).
(viii) Prove: if $l\left(p t_{1}+p t_{2}\right)=2$ for any $p t_{1}, p t_{2} \in X$ then $g(X)=1$.
(Achtung: this does not hold if 'any' is replaced by 'some'.)
(4) (a) Let $\operatorname{Div}_{0}(X)<\operatorname{Div}(X)$ be the subgroup of all the divisors of total degree zero. Prove: $\mathbb{k}(X) \backslash\{0\} \xrightarrow{\text { div }} \operatorname{Div}(X)$ is a homomorphism of abelian groups. Describe its kernel.
(b) Check that the relation $D \equiv D^{\prime}$ on divisors is indeed an equivalence relation. Check that this relation is compatible with the group structure of $\operatorname{Div}_{0}(X), \operatorname{Div}(X)$ and the set $\{D \mid D \equiv 0\}$ is a subgroup of $\operatorname{Div}(X)$.
(c) Check that $\operatorname{Div}(X) / \equiv, \operatorname{Div}(X) / \equiv$ are abelian groups. Prove: $\operatorname{Div}\left(\mathbb{P}^{1}\right) / \equiv \approx \mathbb{Z}$. Prove that $\operatorname{Div} 0\left(X_{g=1}\right) / \equiv$ is not finitely generated.
(d) Fix a smooth cubic $C \subset \mathbb{P}^{2}$ and a point $p \in C$, this defines the group structure. Prove that the map $x \rightarrow x-p$ is an isomorphism of groups, $(C,+, p) \approx \operatorname{Div}_{0}\left(X_{g=1}\right) / \equiv$.
(5) Finally we can prove: any irreducible complex algebraic curve is connected in the classical topology.
(a) Prove: it is enough to consider only smooth projective (complex, irreducible) curves. (By desingularization.)
(b) Let X as above. Prove: X has no isolated points. (Map X birationally into \mathbb{P}^{2})
(c) Suppose X as above has two connected components, X_{1}, X_{2}. Both are compact (in the classical topology). Fix a point $p t \in X_{1}$ and take some $f \in \mathcal{M}_{X}(X)$ that has a pole only at pt. (Why does such a function exist?) Then $\left.f\right|_{X_{2}}$ is a holomorphic function on a compact set, thus is a constant. Thus we can assume $\left.f\right|_{X_{2}}=0$. But then $X_{2} \subset X$ is an algebraic subset.
(d) Prove: any complex projective curve, $C \subset \mathbb{P}^{2}$, (not necessarily irreducible) is connected.

Does this hold also for an affine curve $C \subset \mathbb{C}^{2}$?

