Introduction to Algebraic Curves

201.2.4451. Summer 2019 (D.Kerner)

Homework 2

(1) (a) For \mathbb{k} infinite prove that the curve $\left\{x^{2}+y^{2}=1\right\} \subset \mathbb{k}^{2}$ has infinitely many points. (wiki: Pythagorean triple)
(b) Suppose $\mathbb{k} \subseteq \mathbb{R}$. Show that every algebraic subset of \mathbb{k}^{n} can be defined by one equation, $\{f(\underline{x})=0\} \subset \mathbb{k}^{n}$.
(c) Let $p(x, y), q(x, y) \in \mathbb{k}[x, y]$ be polynomials with no common factors. Prove: the set $\{p(x, y)=0=q(x, y)=$ $0\} \subset \mathbb{k}^{2}$ is finite. (We have seen this in the class.)
(d) Let $\mathbb{k}=\overline{\mathbb{k}}$. Prove: $V(I) \subset \mathbb{k}^{n}$ is finite iff $\operatorname{dim}_{\mathbb{k}} \mathbb{k}[\underline{x}] / I<\infty$. In this case: $\sharp(V(I)) \leq \operatorname{dim}_{\mathbb{k}} \mathbb{k}[\underline{x}] / \sqrt{I}$. What can happen over \mathbb{R} ? (We did not prove this in the class. If you're stuck, see [Fulton])
(2) Here we assume $\mathbb{k}=\overline{\mathbb{k}}$.
(a) Suppose a curve $C \subset \mathbb{k}^{2}$ of degree d has a point of multiplicity d. What are the possible irreducible decompositions of C ?
(b) Fix some $m=\sum r_{i}$ and pairwise independent linear forms $\left\{l_{i}(x, y)\right\}$. Prove: for any $d>m$ there exists an irreducible curve $C \subset \mathbb{k}^{2}$, of degree d, whose tangent cone at the origin is $\left\{\prod l_{i}^{r}(x, y)=0\right\}$. (Prove: if f_{m}, f_{d} are homogeneous polynomials with no common factors then the polynomial $f_{m}+f_{d}$ is irreducible.)
(3) (a) Let $\operatorname{char}(\mathbb{k})=0$. Show that an irreducible plane curve can have only a finite number of singular points. (This holds also in positive characteristic, then need some additional arguments.)
(b) Let $\mathbb{k}=\overline{\mathbb{k}}$. Identify the tangent cones of the following curves at all the singular points.
i. $V\left(\left(x^{2}+y^{2}-1\right)(x-1)(y-x-1) x\right)$.
ii. $V\left(\left(x^{2}+y^{2}\right)^{2}+3 x^{2} y-y^{3}\right)$.
iii. $V\left(\left(x^{2}+y^{2}\right)^{3}-4 x^{2} y^{2}\right)$.
(c) Let $\mathbb{k} \in \mathbb{R}, \mathbb{C}$ and $p t \in C \subset \mathbb{k}^{2}$ a smooth point. Prove that the tangent line is the limit of the secants:

$$
T_{(C, p t)}=\lim _{C \ni(x, y) \rightarrow p t} \overline{(x, y), p t} .
$$

(d) Let $\mathbb{k}=\mathbb{C}$ and $p t \in C \subset \mathbb{C}^{2}$ a singular point. Prove that the tangent cone, as a set, is the union of all the limits of the secants: $\left\{\lim _{C \ni(x, y) \rightarrow p t} \overline{(x, y), p t}\right\}$. Does this hold also for $\mathbb{k}=\mathbb{R}$?
(e) Suppose $\phi \circlearrowright \mathbb{k}^{2}$ is a change of variables, i.e. a polynomial automorphism $(x, y) \rightarrow(\tilde{x}(x, y), \tilde{y}(x, y))$. Prove that $T_{(C, p t)} \subset \mathbb{k}^{2}$ and $T_{(\phi(C), \phi(p t))} \subset \mathbb{k}^{2}$ are related by a linear transformation.
(4) (a) Let $C=\left\{\prod l_{i}(x, y)=0\right\} \subset \mathbb{k}^{2}$, where $l_{i}(x, y)$ are polynomials of degree 1, pairwise linearly independent. (Such curves are called "line arrangements".) Let $p t \in C$ a smooth point. Identify $\mathcal{O}_{(C, p t)}$.
(b) Let $\mathfrak{p} \subset R$ be a prime ideal, check that $R_{\mathfrak{p}}$ is a local ring. Check that the natural map $R \rightarrow R_{\mathfrak{p}}, a \rightarrow \frac{a}{1}$ is a homomorphism of rings.
(c) Prove: if R is Noetherian/domain/PID then so is $R_{\mathfrak{p}}$. Show that the converse does not always hold.
(d) Let $\mathfrak{m} \subset R$ a maximal ideal. Prove that the ring R / \mathfrak{m}^{d} is local, for any $d>0$. Describe the invertible elements.
(e) Suppose R is local and $\mathfrak{m} \subset R$ is the maximal ideal. Is $R_{\mathfrak{m}} \approx R$?
(f) Suppose $V(I) \subset \mathbb{k}^{n}$ does not pass through the origin. What can you say about the image of I in $\mathbb{k}[\underline{x}]_{(\underline{x})}$? What is the geometric interpretation?
(g) Fix an algebraic subset $X \subset \mathbb{k}^{n}$ and a polynomial automorphism $\phi \circlearrowright \mathbb{k}^{n}$. Prove: ϕ induces the isomorphisms $\mathbb{k}[\phi(X)] \stackrel{\phi^{*}}{\sim} \mathbb{k}[X]$ and $\mathcal{O}_{(\phi(X), \phi(p t))} \xrightarrow{\stackrel{\phi^{*}}{\sim}} \mathcal{O}_{(X, p t)}$, for any $p t \in X$.
(h) Do all the local coordinate changes arrive from the global ones?
(5) (a) Let R be a DVR and t_{1}, t_{2} two uniformizers. Prove: $t_{1}=u t_{2}$ for some $u \in R^{\times}$. Prove that the valuation/order function $R \xrightarrow{\text { ord }} \mathbb{N} \cup \infty$ does not depend on the choice of uniformizer.
(b) Check that the following rings are DVR. Give several examples of uniformizers.
i. $\mathbb{k}[[x]]$.
ii. $\mathbb{k}\{x\}$ (for $\mathbb{k} \in \mathbb{R}, \mathbb{C}$).
iii. $\mathbb{k}[x, y]_{(x, y)} /\left(y+y^{3}-x^{3}\right)$.
iv. $\mathbb{k}[x]_{(\infty)}:=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{k}[x], q \neq 0, \operatorname{deg}(p) \leq \operatorname{deg}(q)\right\}$. (this is called:"localization at infinity")
(c) Let R be a DVR with the maximal ideal \mathfrak{m}.
(i) Prove: $\mathfrak{m}^{j} / \mathfrak{m}^{j+1}$ is a vector space over a field R / \mathfrak{m}, for any $j \geq 0$. Compute $\operatorname{dim} \mathfrak{m}^{j} / \mathfrak{m}^{j+1}$.
(ii) For any $f \in R$ prove: $\operatorname{ord}(f)=\operatorname{dim} R /(f)$.
(iii) Take the quotient field $\operatorname{Frac}(R)$. Suppose $f \in \operatorname{Frac}(R)$. Prove: if $f \notin R$ then $\frac{1}{f} \in \mathfrak{m} \subset R$.

