Introduction to Algebraic Curves

201.2.4451. Summer 2019 (D.Kerner)

Homework 3

(1) (a) In the lecture we have stated the equivalence of criteria for R a domain, not a field, to be a DVR. Prove this:
(i) R is Noetherian, local and the maximal ideal is principal.
(ii) Exists an irreducible element $t \in R$ such that $R=\left\{u t^{d} \mid u \in R^{\times}, d \in \mathbb{N}\right\} \cup\{0\}$.
(b) Suppose a DVR contains a field \mathfrak{k} such that the composition $\mathbb{k} \rightarrow R \rightarrow R / \mathfrak{m}$ is an isomorphism. Prove:
(i) For any $z \in R$ exists a unique $\lambda \in \mathbb{k}$ such that $z-\lambda \in \mathfrak{m}$.
(ii) Fix a uniformizing parameter $t \in R$. Then for any $z \in R$ and $n \in \mathbb{N}$ exists a unique presentation: $z=$ $\sum_{i=0}^{n} \lambda_{i} t^{i}+z_{n} t^{n+1}$, with $\left\{\lambda_{i} \in \mathbb{k}\right\}$ and $z_{n} \in R$.
(iii) This presentation defines an embedding (injective homomorphism) $R \hookrightarrow \mathbb{k}[[x]]$.
(c) Go over all the details of the proof: the curve $C \subset \mathbb{k}^{2}$ is smooth at $p t$ iff the ring $\mathcal{O}_{(C, p t)}$ is DVR.

Why the proof does not imply: any DVR is isomorphic to $\mathcal{O}_{\left(\mathbb{k}^{1}, 0\right)}$?
(d) Prove: $g(x, y) \in \mathbb{k}[x, y]$ is sent to a uniformizer in $\mathcal{O}_{(C, p t)}$ iff the curve $V(g)$ is smooth at $p t$ and non-tangent to C.
(2) Recall the uniqueness theorem for holomorphic functions: if $f, g \in \mathcal{O}(\mathcal{U})$ coincide on a convergent (in \mathcal{U}) sequence of points then they coincide on the corresponding connected component of \mathcal{U}. (And no control over the other connected components.) Formulate the uniqueness for localizations.
(3) (a) Let $0 \rightarrow V_{1} \rightarrow \cdots \rightarrow V_{n} \rightarrow 0$ be an exact sequence of finite-dimensional \mathbb{k}-vector spaces. Show: $\sum_{i}(-1)^{j} \operatorname{dim}_{\mathfrak{k}}\left(V_{j}\right)=0$.
(b) For any triple of modules $M \subset N \subset L$ prove: the sequence $0 \rightarrow N / M \rightarrow L / M \rightarrow L / N \rightarrow 0$ is exact.
(We will often use this for $\mathfrak{m}^{j+n} \subset \mathfrak{m}^{j} \subset R$.)
(4) In the proof of " mult $_{p t}(f)=\mathfrak{m}_{p t}^{j} / \mathfrak{m}_{p t}^{j+1}$ for $j \gg 1$ ", we have used the exact sequence $0 \rightarrow \mathfrak{m}^{j} / \mathfrak{m}^{j+1} \rightarrow \mathcal{O}_{(C, p t)} / \mathfrak{m}^{j+1} \rightarrow$
 defined as $\chi(j):=\operatorname{dim}_{\mathrm{k}} \mathcal{O}_{(X, p t)} / \mathfrak{m}_{p t}^{j}$.
(a) Prove that the function $\chi(j):=\operatorname{dim}_{\mathrm{k}} \mathcal{O}_{\left(\mathbb{k}^{n}, p t\right)} / \mathfrak{m}_{p t}^{j}$ is a polynomial in j, of degree n, whose leading coefficient is $\frac{1}{n!}$.
(b) Let $X=\{f(\underline{x})=0\} \subset \mathbb{k}^{n}$ be a hypersurface. Prove: for $j \gg 1$ the function $\chi(j):=\operatorname{dim}_{\mathrm{k}} \mathcal{O}_{(X, p t) / \mathfrak{m}_{p t}^{j}}$ is a polynomial in j, of degree $(n-1)$, whose leading coefficient is $\frac{\operatorname{ord}_{p t}(f)}{(n-1)!}$.
(5) Here we assume $\mathbb{k}=\overline{\mathbb{k}}$.
(a) We had stated that the definition " $i_{p t}\left(f_{1}, f_{2}\right)=\operatorname{dim} \mathbb{k}[x, y]_{\mathfrak{m}_{p t}} /\left(f_{1}, f_{2}\right)$ " satisfies all the properties of the wish list for the intersection multiplicity. Verify this.
(b) Compute $i_{0}\left(f_{1}, f_{2}\right)$ for $f_{1}(x, y)=\left(x^{2}+y^{2}\right)^{2}+3 x^{2} y-y^{3}, f_{2}(x, y)=\left(x^{2}+y^{2}\right)^{3}-4 x^{2} y^{2}$. (If you are stuck, wait for the next lecture.)
(c) Suppose $p t \in C \subset \mathbb{k}^{2}$ is a smooth point and fix a uniformizer $t \in \mathcal{O}_{(C, p t)}$. Let $D=\{f(x, y)=0\}$. Prove: $i_{p t}(C, D)=\operatorname{ord}_{t}(f(x(t), y(t)))$.
(d) (Can postpone this till the next lecture)

Go over all the details of the proof of " $i_{p t}(C, D) \geq \operatorname{mult}_{p t}(C) \cdot \operatorname{mult}_{p t}(D)$ with equality iff ...".
In particular, prove: If $\mathfrak{m}^{m_{1}+m_{2}-1} \subseteq(f, g)+\mathfrak{m}^{m_{1}+m_{2}} \subseteq \mathbb{k}[x, y]_{\mathfrak{m}}$ then $\mathfrak{m}^{m_{1}+m_{2}-1} \subseteq(f, g) \subseteq \mathbb{k}[x, y]_{\mathfrak{m}}$.
This is immediate if one uses the Nakayama lemma. For a proof without Nakayama see Fulton, page 39.
(e) Let $p t \in\{f(x, y)=0\}$ be a smooth point. Prove: $i_{p t}(f, g+h) \geq \min \left(i_{p t}(f, g), i_{p t}(f, h)\right)$.

Does this hold also for non-smooth points?
(f) Fix a curve $C=\{f(x, y)=0\}$ and a parameterized line $L=\left\{(x(t), y(t))=\left(a_{x} t+b_{x}, a_{y} t+b_{y}\right)\right\}$. Check that the roots of the equation $f(x(t), y(t))=0$ correspond to the intersection points, $C \cap L$, with their multiplicities. Prove: $\sum i_{p t}(L, C) \leq \operatorname{deg}(f)$. When is the equality realized?
(g) Give an example of two (smooth) conics both passing through $(0,0) \in \mathbb{k}^{2}$, whose local intersection multiplicity at $(0,0)$ equals 4.
(h) Suppose C is smooth at $p t$ and $L=T_{(C, p t)}$. Check: $i_{p t}(C, L) \geq 2$. This point is called an inflection point (or "a flex") if $i_{p t}(C, L)>2$. What are the flexes of the curve $\left\{y=x^{n}\right\} \subset \mathbb{k}^{2}$?
(i) Does this definition depend on the choice of local coordinates?
(ii) Prove: a smooth conic in \mathbb{k}^{2} has no flexes. (Hint: no heavy computations are needed here)
(iii) Prove: $p t \in\{f(x, y)=0\}$ is an inflection point iff the Hessian matrix satisfies:

$$
\left.\left.\left.\left(-\partial_{y} f, \partial_{x} f\right)\right|_{p t} \cdot \partial^{2} f\right|_{p t} \cdot\binom{-\partial_{y} f}{\partial_{x} f}\right|_{p t}=0
$$

