Introduction to Algebraic Curves

201.2.4451. Summer 2019 (D.Kerner)

Homework 4

- (1) (a) Let $\{\mathcal{U}_i\}$ be the standard affine charts on \mathbb{P}^n . Describe the sets $X_i := \mathbb{P}^n \setminus \{\bigcup_{j \neq i} \mathcal{U}_j\}, X_{12} := \mathbb{P}^n \setminus \{\bigcup_{j \neq 1, 2} \mathcal{U}_j\}$. (b) Fix an affine plane of dimension r with the parametrization $L = \{\vec{v}_0 + \sum t_i \vec{v}_i | (t_1, \dots, t_r) \in \mathbb{R}^r\} \subset \mathbb{R}^n$.

 - (c) Prove: through any two points of \mathbb{P}^2 passes unique (projective) line.
 - (d) Prove: given any $\binom{d+2}{2} 1$ points in \mathbb{P}^2 there is a curve of degree *d* passing through them. Moreover, if the points are "mutually generic" then such a curve is unique. (Here the genericity condition is formulated as the non-degeneracy of some matrix, what is this matrix?)
 - (e) Let $L_1, L_2 \subset \mathbb{P}^n$ be planes of dimensions d_1, d_2 . Prove: $dim(L_1 \cap L_2) \ge d_1 + d_2 n$. Does this hold also in \mathbb{R}^n ? (Which condition should be added?)
 - (f) Let X be the one-point compactification of \mathbb{C}^2 . Let $l_1, l_2 \subset \mathbb{C}^2$ be two non-parallel lines. In how many points do their closures intersect?
 - (g) Let $L_i = \{l_i(\underline{x}) = 0\}$ be two (distinct) hyperplanes in \mathbb{k}^n . (Here $deg(l_i) = 1$) Consider the spanned family $\{l_1(\underline{x}) + l_2(\underline{x}) = 0\} \subset \mathbb{k}_x^n \times \mathbb{k}_t^1.$
 - (i) Describe the members of this family. (We did this in the class for $L_1, L_2 \subset \mathbb{k}^2$.) What is the base locus?
 - (ii) This family contains L_1 , but not L_2 . How to extend this family so that the value $t = \infty$ will be allowed? (iii) Extend all this to one-dimensional families of hyperplanes in \mathbb{P}^n .
- (2) (a) Prove: f(x) ∈ k[x1,...,xn] is irreducible iff x^{deg(f)}₀ f(x1/x0,...,xn) ∈ k[x0,...,xn] is irreducible.
 (b) Prove: I ⊂ k[x0,...,xn] has a system of homogeneous generators iff for any f ∈ I all the homogeneous components of f belong to I.
 - (c) Prove: an algebraic set $X \subset \mathbb{P}^n$ is irreducible iff the ideal $I(X) \subset \Bbbk[x_0, \ldots, x_n]$ is prime.
 - (d) Let $I \subset k[\underline{x}]$ be a homogeneous prime ideal. Prove: if $f \cdot g \in I$ then either all homogeneous components of f belong to I or the same for q. (Thus I is "homogeneously prime".)
 - (e) Prove: if I is a homogeneous ideal then \sqrt{I} is homogeneous.
 - (f) Suppose k is infinite. Prove: if $X \subset \mathbb{P}^n$ is an algebraic subset and $f \in k[x_0, \ldots, x_n]$ vanishes identically on X, then all the homogeneous components of f vanish on X.
 - (g) Prove: any intersection/finite union of algebraic subsets of \mathbb{P}^n is algebraic.
 - (h) Prove: $X \subset \mathbb{P}^n$ is a projective algebraic set/hypersurface iff for any affine chart \mathcal{U}_i : $X \cap \mathcal{U}_i$ is an affine algebraic set/hypersurface.
 - (i) Let $I = (x_1 + x_3^2, x_2 + x_3^2)$ and $X = V(I) \subset \mathbb{k}^3$. Describe $\overline{X} \subset \mathbb{P}^3$ and $I_{\overline{X}}$. How \overline{X} "looks like" near L_{∞} ? (Warning: the defining ideal of $\overline{X} \subset \mathbb{P}^3$ is not generated by just two elements.)
- (3) (a) The group $\mathbb{P}GL(n+1,\mathbb{k}) = GL(n+1,\mathbb{k})/\mathbb{k}^{\times}$ acts on \mathbb{P}^n , these are called: projective transformations. Prove: $\mathbb{P}GL(n+1,\mathbb{k})$ sends algebraic subsets to algebraic, hypersurfaces to hypersurfaces, planes to planes, smooth points of curves to smooth points.
 - (b) Fix some generating linear form, $I_X = (l_1(\underline{x}), \dots, l_r(\underline{x}))$, and take the matrix of their coefficients, $A \in Mat_{r \times (n+1)}(\Bbbk)$. The codimension of $X \subseteq \mathbb{P}^n$ is the row-rank of this matrix, while the dimension is n - codim(X). Check that these do not depend on the choice of coordinates in \mathbb{P}^n , generators of I_X . Check that the (co)dimension of a linear subset coincides with the (co)dimension of (any of) its affine part. Convert this into the parametrization of $\overline{L} \subset \mathbb{P}^n$.
 - (c) Prove: any three points $pt_1, pt_2, pt_3 \in \mathbb{P}^2$ not lying on one line can be brought by $\mathbb{P}GL(3)$ to [1:0:0], [0:1:0][0:0:1]. Formulate and prove the higher dimensional analogue of this statement.
 - (d) Prove: any three lines in \mathbb{P}^2 that do not all pass through one point can be brought to the lines $\{x_i = 0\}_{i=0,1,2}$. Formulate and prove the analogous statement for hyperplanes in \mathbb{P}^n .
- (a) Prove: any homogeneous ideal in $k[\underline{x}]$ is homogeneously finitely generated. (4)
 - (b) For a projective algebraic set $X \subset \mathbb{P}^n$ take the coordinate ring $\Bbbk[X]$. Prove: every element of $\Bbbk[X]$ can be written (uniquely) as $\sum \bar{f_i}$, where $\bar{f_i} \in \Bbbk[X]$ is the image of some homogeneous polynomial $f_i \in \Bbbk[x_0, \ldots, x_n]$ Prove: the images of degree-d-homogeneous polynomials form a finite dimensional vector subspace $\mathbb{k}[X]_d \subset \mathbb{k}[X]$.
 - (c) Fix a hypersurface $X = \{f(\underline{x}) = 0\} \subset \mathbb{P}^n$. Check the exactness of the sequence $0 \to \Bbbk[\underline{x}] \xrightarrow{\times f} \Bbbk[\underline{x}] \to \Bbbk[X] \to 0$. Compute $\dim_{\Bbbk} \Bbbk[X]_d$.
 - Take some algebraic subsets $X \subseteq Y \subseteq \mathbb{P}^n$, with X an irreducible hypersurface. (d) Prove: either X = Y or $Y = \mathbb{P}^n$ or Y is reducible.

- (5) (a) Prove: any non-empty open subset of an irreducible algebraic subset (in \mathbb{k}^n , \mathbb{P}^n) is dense.
 - (b) Prove: $X \subset \mathbb{P}^n$ is closed iff $X \cap \mathcal{U}_i$ is closed for any chart $\mathcal{U}_i = \{x_i \neq 0\}$.
 - (c) Find the Zariski closure of the following subsets: $\mathbb{Z} \subset \mathbb{Q}$, $\{y = sin(x)\} \subset \mathbb{C}^2$.
 - (d) Prove: the projective closure of an affine hypersurface is a hypersurface, i.e. it is defined by one equation.
- (6) (a) Prove: any continuous bijection of irreducible plane curves is a homeomorphism.
 (Later we will define the notion of isomorphism, and show that a homeomorphism is not necessarily an isomorphism.)
 - (b) Prove: any collection of closed subsets of a (affine/projective) algebraic set has a minimal member.
 - (c) Prove: $\mathbb{P}^n_{\mathbb{k}}$ is compact in Zariski topology. For $\mathbb{k} \subseteq \mathbb{C}$ prove: $\mathbb{P}^n_{\mathbb{k}}$ is compact in the classical topology.
 - (d) Let $V \subseteq \mathbb{P}^n$ be an algebraic subset and $X \subseteq V$ be open. Prove: any open cover of X has a finite subcover.
 - (e) Let $X \subset \mathbb{C}^n$ be an algebraic subset, dim(X) > 0. Prove: X is not bounded. (In particular, not compact in the classical topology.) Therefore any (complex) projective algebraic set of positive dimension cannot be realized as an algebraic subset of \mathbb{C}^n , for any n. (e.g. $\mathbb{P}^1 \not\subset \mathbb{C}^n$, for any n.)