Introduction to Algebraic Curves

201.2.4451. Summer 2019 (D.Kerner)

Homework 4

(1) (a) Let $\left\{\mathcal{U}_{i}\right\}$ be the standard affine charts on \mathbb{P}^{n}. Describe the sets $X_{i}:=\mathbb{P}^{n} \backslash\left\{\cup_{j \neq i} \mathcal{U}_{j}\right\}, X_{12}:=\mathbb{P}^{n} \backslash\left\{\cup_{j \neq 1,2} \mathcal{U}_{j}\right\}$.
(b) Fix an affine plane of dimension r with the parametrization $L=\left\{\vec{v}_{0}+\sum t_{i} \vec{v}_{i} \mid\left(t_{1}, \ldots, t_{r}\right) \in \mathbb{k}^{r}\right\} \subset \mathbb{k}^{n}$.
(c) Prove: through any two points of \mathbb{P}^{2} passes unique (projective) line.
(d) Prove: given any $\binom{d+2}{2}-1$ points in \mathbb{P}^{2} there is a curve of degree d passing through them. Moreover, if the points are "mutually generic" then such a curve is unique. (Here the genericity condition is formulated as the non-degeneracy of some matrix, what is this matrix?)
(e) Let $L_{1}, L_{2} \subset \mathbb{P}^{n}$ be planes of dimensions d_{1}, d_{2}. Prove: $\operatorname{dim}\left(L_{1} \cap L_{2}\right) \geq d_{1}+d_{2}-n$. Does this hold also in \mathbb{k}^{n} ? (Which condition should be added?)
(f) Let X be the one-point compactification of \mathbb{C}^{2}. Let $l_{1}, l_{2} \subset \mathbb{C}^{2}$ be two non-parallel lines. In how many points do their closures intersect?
(g) Let $L_{i}=\left\{l_{i}(\underline{x})=0\right\}$ be two (distinct) hyperplanes in \mathbb{k}^{n}. (Here $\operatorname{deg}\left(l_{i}\right)=1$) Consider the spanned family $\left\{l_{1}(\underline{x})+l_{2}(\underline{x})=0\right\} \subset \mathbb{k}_{\underline{x}}^{n} \times \mathbb{k}_{t}^{1}$.
(i) Describe the members of this family. (We did this in the class for $L_{1}, L_{2} \subset \mathbb{k}^{2}$.) What is the base locus?
(ii) This family contains L_{1}, but not L_{2}. How to extend this family so that the value $t=\infty$ will be allowed?
(iii) Extend all this to one-dimensional families of hyperplanes in \mathbb{P}^{n}.
(2) (a) Prove: $f(\underline{x}) \in \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ is irreducible iff $x_{0}^{\operatorname{deg}(f)} f\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) \in \mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ is irreducible.
(b) Prove: $I \subset \mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ has a system of homogeneous generators iff for any $f \in I$ all the homogeneous components of f belong to I.
(c) Prove: an algebraic set $X \subset \mathbb{P}^{n}$ is irreducible iff the ideal $I(X) \subset \mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ is prime.
(d) Let $I \subset \mathbb{k}[\underline{x}]$ be a homogeneous prime ideal. Prove: if $f \cdot g \in I$ then either all homogeneous components of f belong to I or the same for g. (Thus I is "homogeneously prime".)
(e) Prove: if I is a homogeneous ideal then \sqrt{I} is homogeneous.
(f) Suppose \mathbb{k} is infinite. Prove: if $X \subset \mathbb{P}^{n}$ is an algebraic subset and $f \in \mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ vanishes identically on X, then all the homogeneous components of f vanish on X.
(g) Prove: any intersection/finite union of algebraic subsets of \mathbb{P}^{n} is algebraic.
(h) Prove: $X \subset \mathbb{P}^{n}$ is a projective algebraic set/hypersurface iff for any affine chart $\mathcal{U}_{i}: X \cap \mathcal{U}_{i}$ is an affine algebraic set/hypersurface.
(i) Let $I=\left(x_{1}+x_{3}^{2}, x_{2}+x_{3}^{2}\right)$ and $X=V(I) \subset \mathbb{k}^{3}$. Describe $\bar{X} \subset \mathbb{P}^{3}$ and $I_{\bar{X}}$. How \bar{X} "looks like" near L_{∞} ? (Warning: the defining ideal of $\bar{X} \subset \mathbb{P}^{3}$ is not generated by just two elements.)
(3) (a) The group $\mathbb{P} G L(n+1, \mathbb{k})=G L(n+1, \mathbb{k}) / \mathbb{k}^{\times} \times$acts on \mathbb{P}^{n}, these are called: projective transformations. Prove: $\mathbb{P} G L(n+1, \mathbb{k})$ sends algebraic subsets to algebraic, hypersurfaces to hypersurfaces, planes to planes, smooth points of curves to smooth points.
(b) Fix some generating linear form, $I_{X}=\left(l_{1}(\underline{x}), \ldots, l_{r}(\underline{x})\right)$, and take the matrix of their coefficients, $A \in M a t_{r \times(n+1)}(\mathbb{k})$. The codimension of $X \subseteq \mathbb{P}^{n}$ is the row-rank of this matrix, while the dimension is $n-\operatorname{codim}(X)$. Check that these do not depend on the choice of coordinates in \mathbb{P}^{n}, generators of I_{X}. Check that the (co)dimension of a linear subset coincides with the (co)dimension of (any of) its affine part. Convert this into the parametrization of $\bar{L} \subset \mathbb{P}^{n}$.
(c) Prove: any three points $p t_{1}, p t_{2}, p t_{3} \in \mathbb{P}^{2}$ not lying on one line can be brought by $\mathbb{P} G L(3)$ to $[1: 0: 0],[0: 1: 0]$, $[0: 0: 1]$. Formulate and prove the higher dimensional analogue of this statement.
(d) Prove: any three lines in \mathbb{P}^{2} that do not all pass through one point can be brought to the lines $\left\{x_{i}=0\right\}_{i=0,1,2}$. Formulate and prove the analogous statement for hyperplanes in \mathbb{P}^{n}.
(4) (a) Prove: any homogeneous ideal in $\mathbb{k}[\underline{x}]$ is homogeneously finitely generated.
(b) For a projective algebraic set $X \subset \mathbb{P}^{n}$ take the coordinate ring $\mathbb{k}[X]$. Prove: every element of $\mathbb{k}[X]$ can be written (uniquely) as $\sum \bar{f}_{i}$, where $\bar{f}_{i} \in \mathbb{k}[X]$ is the image of some homogeneous polynomial $f_{i} \in \mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ Prove: the images of degree- d-homogeneous polynomials form a finite dimensional vector subspace $\mathbb{k}[X]_{d} \subset \mathbb{k}[X]$.
(c) Fix a hypersurface $X=\{f(\underline{x})=0\} \subset \mathbb{P}^{n}$. Check the exactness of the sequence $0 \rightarrow \mathbb{k}[\underline{x}] \xrightarrow{\times f} \mathbb{k}[\underline{x}] \rightarrow \mathbb{k}[X] \rightarrow 0$. Compute $\operatorname{dim}_{\mathfrak{k}} \mathbb{k}[X]_{d}$.
(d) Take some algebraic subsets $X \subseteq Y \subseteq \mathbb{P}^{n}$, with X an irreducible hypersurface.

Prove: either $X=Y$ or $Y=\mathbb{P}^{n}$ or Y is reducible.
(5) (a) Prove: any non-empty open subset of an irreducible algebraic subset (in $\mathbb{k}^{n}, \mathbb{P}^{n}$) is dense.
(b) Prove: $X \subset \mathbb{P}^{n}$ is closed iff $X \cap \mathcal{U}_{i}$ is closed for any chart $\mathcal{U}_{i}=\left\{x_{i} \neq 0\right\}$.
(c) Find the Zariski closure of the following subsets: $\mathbb{Z} \subset \mathbb{Q},\{y=\sin (x)\} \subset \mathbb{C}^{2}$.
(d) Prove: the projective closure of an affine hypersurface is a hypersurface, i.e. it is defined by one equation.
(6) (a) Prove: any continuous bijection of irreducible plane curves is a homeomorphism. (Later we will define the notion of isomorphism, and show that a homeomorphism is not necessarily an isomorphism.)
(b) Prove: any collection of closed subsets of a (affine/projective) algebraic set has a minimal member.
(c) Prove: \mathbb{P}_{k}^{n} is compact in Zariski topology. For $\mathbb{k} \subseteq \mathbb{C}$ prove: \mathbb{P}_{k}^{n} is compact in the classical topology.
(d) Let $V \subseteq \mathbb{P}^{n}$ be an algebraic subset and $X \subseteq V$ be open. Prove: any open cover of X has a finite subcover.
(e) Let $X \subset \mathbb{C}^{n}$ be an algebraic subset, $\operatorname{dim}(X)>0$. Prove: X is not bounded. (In particular, not compact in the classical topology.) Therefore any (complex) projective algebraic set of positive dimension cannot be realized as an algebraic subset of \mathbb{C}^{n}, for any n. (e.g. $\mathbb{P}^{1} \not \subset \mathbb{C}^{n}$, for any n.)

