Introduction to Algebraic Curves

201.2.4451. Summer 2019 (D.Kerner)

Homework 5

- (1) (a) In the lecture we have obtained the local ring $\mathcal{O}_{(X,pt)}$ of $X \subset \mathbb{P}^n$ by first restricting to some affine chart \mathcal{U}_i and then localizating. Prove that $\mathcal{O}_{(X,pt)}$ does not depend on the choice of the affine chart.
 - (b) In the lecture we have defined the function field k(X). Check that this is indeed a field. For $X = \mathbb{P}^n$ compute its transcendence degree over k.
 - (c) Let $X \subset \mathbb{P}^n$ be defined by a prime ideal $I \subset k[\underline{x}]$ and let $f \in k(X)$. Prove: the sets of zeros/poles of f are algebraic subsets of \mathbb{P}^n .
- (2) (a) Suppose $k = \bar{k}$. Show that any smooth conic is $\mathbb{P}GL(2)$ -equivalent to $V(x^2 + y^2 + z^2)$.
 - (b) Show that pt is a singular point of $\{f(x, y, z) = 0\} \subset \mathbb{P}^2$ iff $\partial_x f|_{pt} = \partial_y f|_{pt} = \partial_z f|_{pt} = 0$. (Assume $char(\mathbb{k}) \nmid deg(f)$.) If $[x_0: y_0: z_0]$ is a smooth point, check that the tangent line is defined by $(x-x_0)\partial_x f + (y-y_0)\partial_y f + (z-z_0)\partial_z f = 0$.
 - (c) For any $pt \in C = \{f(x, y, z) = 0\} \subset \mathbb{P}^2$ prove: $mult_{pt}(C) \leq mult_{pt}\{\partial_x f(x, y, z) = 0\} + 1$.
 - (d) Find all the intersection points and the local intersection multiplicities of $V(y^2z x(x 2z)(x + z))$, $V(y^2 + x^2 2xz)$ in \mathbb{P}^2 .
 - (e) (Here $char(\mathbb{k}) = 0$.) Suppose the curve $C = V(f) \subset \mathbb{P}^2$ is irreducible. Prove: $\partial_x f|_C \cdot \partial_y f|_C \cdot \partial_z f|_C \neq 0$. In particular C has a finite number of singular points.
 - (f) (Here $\mathbf{k} = \bar{\mathbf{k}}$) Prove: a plane cubic with more than one singular point is reducible. Classify, up to $\mathbb{P}GL(3)$ -equivalence, all the reducible plane cubics.
- (3) Fix a local ring (R, m). The order of an element f∈R is ord(f) := sup{j | f∈m^j} ≤∞. (Dis)prove the following properties. Even if a property fails in general, give several examples of local rings where this property holds.
 i. ord(f) = ∞ iff f = 0. ii. ord(f±g) ≥ min(ord(f), ord(g)). iii. ord(f ⋅ g) = ord(f) + ord(g) iv. ord(f/g) = ord(f) ord(g).
- (4) (a) Suppose k is infinite. Prove: for any finite subset S ⊂ P² there exists a curve C ⊂ P² such that C ∩ S = Ø.
 (b) (k = k) Fix an irreducible curve C ⊂ P², some smooth points on it, pt₁,..., pt_r, and some integers {m_i}_i. Construct a rational function f ∈ k(C) with ord_{pt_i}(f) = m_i.
 - (c) $(\mathbb{k} = \overline{\mathbb{k}})$ Prove that every non-singular curve $V(f) \subset \mathbb{P}^2$ is irreducible. (What about the affine plane curves?)
- (5) (a) Let $p(x) = \prod (x x_i)^{n_i}$. Prove: $k[x]/p(x) \xrightarrow{\sim} \prod k[x]/(x x_i)^{n_i}$. (This is a particular case of the general statement proven in the class, but in the one-variable case the proof is straightforward.)
 - (b) $(\mathbb{k} = \overline{\mathbb{k}})$ Fix a finite collection of points $\{pt_i\}$ in \mathbb{P}^n . For any $d \in \mathbb{N}$ prove: $(\cap \mathfrak{m}_{pt_i})^d = \cap \mathfrak{m}_{pt_i}^d$. (see Fulton, pg.26)
- (6) $(char(\mathbb{k}) = 0, \mathbb{k} = \overline{\mathbb{k}})$ The following continues question 5 of hwk 3. Fix a smooth curve $V(f) \subset \mathbb{P}^2$ and consider the Hessian matrix, $\partial^2 f \in Mat_{3\times 3}(\mathbb{k}[x, y, z])$.
 - (a) Show: if deg(f) > 2 then $det(\partial^2 f)$ is non-constant. (Hint: you can use the Euler formula $\sum x_i \partial_i f = d \cdot f$.)
 - (b) Prove: the points of $V(f) \cap V(det(\partial^2 f))$ are exactly the flexes of V(f). Moreover: $pt \in V(\overline{f})$ is an ordinary flex iff $i_{pt}(V(f), V(det(\partial^2 f))) = 1$. (Hint: apply $\mathbb{P}GL(3)$ to set pt = (0:0:1) with the tangent line (y = 0). (How does this affect $\partial^2 f$?) Then we
 - (Hint: apply $\mathbb{P}GL(3)$ to set pt = (0:0:1) with the tangent line (y = 0). (How does this affect $\partial^2 f$?) Then we can assume $f(x, y, z) = z^{d-1}y + az^{d-2}x^2 + y^2(\dots) + xy(\dots) + x^3(\dots)$. Compute $\partial^2 f|_{(0:0:1)}$.) (c) Conclude: every smooth curve of deg > 2 has a flex.
 - Prove: if all the flexes of a smooth curve are ordinary then their total number is $d \cdot 3(d-2)$.
- (7) Assume $\mathbf{k} = \bar{\mathbf{k}}$, $char(\mathbf{k}) = 0$. We classify the irreducible plane cubics.
 - (a) Show that a smooth plane cubic has only ordinary flexes. Conclude: a smooth cubic has precisely 9 flexes.
 - (b) Put one of the flexes to (0:1:0) with the tangent line (z=0). Then the defining equation consists of monomials y^2z , yxz, x^3 , x^2z , xz^2 , z^3 . Apply now a $\mathbb{P}GL(3, \mathbb{k})$ transformations to get rid of yzx, z^3 . Then arrive at the Weierstraß normal form of smooth cubic: $y^2z = x(x-z)(x-\lambda \cdot z)$, with $\lambda \neq 0, 1$.
 - (c) Prove: any irreducible singular cubic is $\mathbb{P}GL(3)$ -equivalent to one of: $y^2 = x^3$, $y^2 = x^2 + x^3$.
- (8) Fix some $h, f, g \in \mathfrak{m} = (x, y) \subset \Bbbk[x, y]$. Prove: any of the following conditions ensures $(h)_{\mathfrak{m}} \in (f, g)_{\mathfrak{m}} \subset \Bbbk[x, y]_{\mathfrak{m}}$.
 - (a) V(f), V(g) are transverse at 0 (i.e. both are smooth and non-tangent) and $h|_0 = 0$.
 - (b) V(f) is smooth at 0 and $i_0(h, f) \ge i_0(g, f)$.
 - (c) $T_{(V(f),0)} \cap T_{(V(g),0)} = \{0\}$ and $ord_0(h) \ge ord_0(f) + ord_0(g) 1$.