# Introduction to Algebraic Curves 

201.2.4451. Summer 2019 (D.Kerner)

## Homework 5


(1) (a) In the lecture we have obtained the local ring $\mathcal{O}_{(X, p t)}$ of $X \subset \mathbb{P}^{n}$ by first restricting to some affine chart $\mathcal{U}_{i}$ and then localizating. Prove that $\mathcal{O}_{(X, p t)}$ does not depend on the choice of the affine chart.
(b) In the lecture we have defined the function field $\mathbb{k}(X)$. Check that this is indeed a field. For $X=\mathbb{P}^{n}$ compute its transcendence degree over $\mathbb{k}$.
(c) Let $X \subset \mathbb{P}^{n}$ be defined by a prime ideal $I \subset \mathbb{k}[\underline{x}]$ and let $f \in \mathbb{k}(X)$. Prove: the sets of zeros/poles of $f$ are algebraic subsets of $\mathbb{P}^{n}$.
(2) (a) Suppose $\mathbb{k}=\overline{\mathbb{k}}$. Show that any smooth conic is $\mathbb{P} G L(2)$-equivalent to $V\left(x^{2}+y^{2}+z^{2}\right)$.
(b) Show that $p t$ is a singular point of $\{f(x, y, z)=0\} \subset \mathbb{P}^{2}$ iff $\left.\partial_{x} f\right|_{p t}=\left.\partial_{y} f\right|_{p t}=\left.\partial_{z} f\right|_{p t}=0$. (Assume $\operatorname{char}(\mathbb{k}) \nmid \operatorname{deg}(f)$.) If $\left[x_{0}: y_{0}: z_{0}\right]$ is a smooth point, check that the tangent line is defined by $\left(x-x_{0}\right) \partial_{x} f+\left(y-y_{0}\right) \partial_{y} f+\left(z-z_{0}\right) \partial_{z} f=0$.
(c) For any $p t \in C=\{f(x, y, z)=0\} \subset \mathbb{P}^{2}$ prove: $\operatorname{mult}_{p t}(C) \leq \operatorname{mult}_{p t}\left\{\partial_{x} f(x, y, z)=0\right\}+1$.
(d) Find all the intersection points and the local intersection multiplicities of $V\left(y^{2} z-x(x-2 z)(x+z)\right), V\left(y^{2}+\right.$ $\left.x^{2}-2 x z\right)$ in $\mathbb{P}^{2}$.
(e) (Here $\operatorname{char}(\mathbb{k})=0$.) Suppose the curve $C=V(f) \subset \mathbb{P}^{2}$ is irreducible. Prove: $\left.\left.\left.\partial_{x} f\right|_{C} \cdot \partial_{y} f\right|_{C} \cdot \partial_{z} f\right|_{C} \not \equiv 0$. In particular $C$ has a finite number of singular points.
(f) (Here $\mathbb{k}=\overline{\mathbb{k}}$ ) Prove: a plane cubic with more than one singular point is reducible. Classify, up to $\mathbb{P} G L(3)$-equivalence, all the reducible plane cubics.
(3) Fix a local ring $(R, \mathfrak{m})$. The order of an element $f \in R$ is $\operatorname{ord}(f):=\sup \left\{j \mid f \in \mathfrak{m}^{j}\right\} \leq \infty$. (Dis)prove the following properties. Even if a property fails in general, give several examples of local rings where this property holds.
i. $\quad \operatorname{ord}(f)=\infty$ iff $f=0 . \quad$ ii. $\quad \operatorname{ord}(f \pm g) \geq \min (\operatorname{ord}(f), \operatorname{ord}(g)) . \quad$ iii. $\quad \operatorname{ord}(f \cdot g)=\operatorname{ord}(f)+\operatorname{ord}(g)$
iv. $\operatorname{ord}\left(\frac{f}{g}\right)=\operatorname{ord}(f)-\operatorname{ord}(g)$.
(4) (a) Suppose $\mathbb{k}$ is infinite. Prove: for any finite subset $S \subset \mathbb{P}^{2}$ there exists a curve $C \subset \mathbb{P}^{2}$ such that $C \cap S=\varnothing$.
(b) $(\mathbb{k}=\overline{\mathbb{k}})$ Fix an irreducible curve $C \subset \mathbb{P}^{2}$, some smooth points on it, $p t_{1}, \ldots, p t_{r}$, and some integers $\left\{m_{i}\right\}_{i}$. Construct a rational function $f \in \mathbb{k}(C)$ with $\operatorname{ord}_{p t_{i}}(f)=m_{i}$.
(c) $(\mathbb{k}=\overline{\mathbb{k}})$ Prove that every non-singular curve $V(f) \subset \mathbb{P}^{2}$ is irreducible. (What about the affine plane curves?)
(5) (a) Let $p(x)=\prod\left(x-x_{i}\right)^{n_{i}}$. Prove: $\mathbb{k}[x] / p(x) \xrightarrow{\sim} \prod \mathbb{k}[x] /\left(x-x_{i}\right)^{n_{i}}$. (This is a particular case of the general statement proven in the class, but in the one-variable case the proof is straightforward.)
(b) $(\mathbb{k}=\overline{\mathbb{k}})$ Fix a finite collection of points $\left\{p t_{i}\right\}$ in $\mathbb{P}^{n}$. For any $d \in \mathbb{N}$ prove: $\left(\cap \mathfrak{m}_{p t_{i}}\right)^{d}=\cap \mathfrak{m}_{p t_{i}}^{d}$. (see Fulton, pg.26)
(6) $(\operatorname{char}(\mathbb{k})=0, \mathbb{k}=\overline{\mathbb{k}})$ The following continues question 5 of hwk 3 . Fix a smooth curve $V(f) \subset \mathbb{P}^{2}$ and consider the Hessian matrix, $\partial^{2} f \in M a t_{3 \times 3}(\mathbb{k}[x, y, z])$.
(a) Show: if $\operatorname{deg}(f)>2$ then $\operatorname{det}\left(\partial^{2} f\right)$ is non-constant. (Hint: you can use the Euler formula $\sum x_{i} \partial_{i} f=d \cdot f$.)
(b) Prove: the points of $V(f) \cap V\left(\operatorname{det}\left(\partial^{2} f\right)\right)$ are exactly the flexes of $V(f)$. Moreover: pt $\in V(f)$ is an ordinary flex iff $i_{p t}\left(V(f), V\left(\operatorname{det}\left(\partial^{2} f\right)\right)\right)=1$.
(Hint: apply $\mathbb{P} G L(3)$ to set $p t=(0: 0: 1)$ with the tangent line $(y=0)$. (How does this affect $\partial^{2} f$ ?) Then we can assume $f(x, y, z)=z^{d-1} y+a z^{d-2} x^{2}+y^{2}(\ldots)+x y(\ldots)+x^{3}(\ldots)$. Compute $\left.\partial^{2} f\right|_{(0: 0: 1)}$.)
(c) Conclude: every smooth curve of $d e g>2$ has a flex.

Prove: if all the flexes of a smooth curve are ordinary then their total number is $d \cdot 3(d-2)$.
(7) Assume $\mathbb{k}=\overline{\mathbb{k}}, \operatorname{char}(\mathbb{k})=0$. We classify the irreducible plane cubics.
(a) Show that a smooth plane cubic has only ordinary flexes. Conclude: a smooth cubic has precisely 9 flexes.
(b) Put one of the flexes to $(0: 1: 0)$ with the tangent line $(z=0)$. Then the defining equation consists of monomials $y^{2} z, y x z, x^{3}, x^{2} z, x z^{2}, z^{3}$. Apply now a $\mathbb{P} G L(3, \mathbb{k})$ transformations to get rid of $y z x, z^{3}$. Then arrive at the Weierstraß normal form of smooth cubic: $y^{2} z=x(x-z)(x-\lambda \cdot z)$, with $\lambda \neq 0,1$.
(c) Prove: any irreducible singular cubic is $\mathbb{P} G L(3)$-equivalent to one of: $y^{2}=x^{3}, y^{2}=x^{2}+x^{3}$.
(8) Fix some $h, f, g \in \mathfrak{m}=(x, y) \subset \mathbb{k}[x, y]$. Prove: any of the following conditions ensures $(h)_{\mathfrak{m}} \in(f, g)_{\mathfrak{m}} \subset \mathbb{k}[x, y]_{\mathfrak{m}}$.
(a) $V(f), V(g)$ are transverse at 0 (i.e. both are smooth and non-tangent) and $\left.h\right|_{0}=0$.
(b) $V(f)$ is smooth at 0 and $i_{0}(h, f) \geq i_{0}(g, f)$.
(c) $T_{(V(f), 0)} \cap T_{(V(g), 0)}=\{0\}$ and $\operatorname{ord}_{0}(h) \geq \operatorname{ord}_{0}(f)+\operatorname{ord}_{0}(g)-1$.

