
Introduction to Algebraic Curves
201.2.4451. Summer 2019 (D.Kerner)

Homework 5

(1) (a) In the lecture we have obtained the local ring O(X,pt) of X ⊂ Pn by first restricting to some affine chart Ui and
then localizating. Prove that O(X,pt) does not depend on the choice of the affine chart.

(b) In the lecture we have defined the function field k(X). Check that this is indeed a field. For X = Pn compute
its transcendence degree over k.

(c) Let X ⊂ Pn be defined by a prime ideal I ⊂ k[x] and let f ∈ k(X). Prove: the sets of zeros/poles of f are
algebraic subsets of Pn.

(2) (a) Suppose k = k̄. Show that any smooth conic is PGL(2)-equivalent to V (x2 + y2 + z2).
(b) Show that pt is a singular point of {f(x, y, z)=0}⊂P2 iff ∂xf |pt =∂yf |pt =∂zf |pt =0. (Assume char(k) - deg(f).)

If [x0 :y0 :z0] is a smooth point, check that the tangent line is defined by (x−x0)∂xf+(y−y0)∂yf+(z−z0)∂zf=0.
(c) For any pt ∈ C = {f(x, y, z) = 0} ⊂ P2 prove: multpt(C) ≤ multpt{∂xf(x, y, z) = 0}+ 1.
(d) Find all the intersection points and the local intersection multiplicities of V (y2z − x(x − 2z)(x + z)), V (y2 +

x2 − 2xz) in P2.
(e) (Here char(k) = 0.) Suppose the curve C = V (f) ⊂ P2 is irreducible. Prove: ∂xf |C · ∂yf |C · ∂zf |C 6≡ 0.

In particular C has a finite number of singular points.
(f) (Here k = k̄) Prove: a plane cubic with more than one singular point is reducible.

Classify, up to PGL(3)-equivalence, all the reducible plane cubics.

(3) Fix a local ring (R,m). The order of an element f ∈R is ord(f) := sup{j| f ∈ mj}≤∞. (Dis)prove the following
properties. Even if a property fails in general, give several examples of local rings where this property holds.

i. ord(f) =∞ iff f = 0. ii. ord(f ± g) ≥ min(ord(f), ord(g)). iii. ord(f · g) = ord(f) + ord(g)

iv. ord( f
g ) = ord(f)− ord(g).

(4) (a) Suppose k is infinite. Prove: for any finite subset S ⊂ P2 there exists a curve C ⊂ P2 such that C ∩ S = ∅.
(b) (k = k̄) Fix an irreducible curve C ⊂ P2, some smooth points on it, pt1, . . . , ptr, and some integers {mi}i.

Construct a rational function f ∈ k(C) with ordpti(f) = mi.
(c) (k = k̄) Prove that every non-singular curve V (f) ⊂ P2 is irreducible. (What about the affine plane curves?)

(5) (a) Let p(x) =
∏

(x−xi)ni . Prove: k[x]/p(x)
∼−→

∏
k[x]/(x− xi)

ni . (This is a particular case of the general statement
proven in the class, but in the one-variable case the proof is straightforward.)

(b) (k = k̄) Fix a finite collection of points {pti} in Pn. For any d ∈ N prove: (∩mpti)
d = ∩md

pti . (see Fulton, pg.26)

(6) (char(k) = 0, k = k̄) The following continues question 5 of hwk 3. Fix a smooth curve V (f) ⊂ P2 and consider the
Hessian matrix, ∂2f ∈Mat3×3(k[x, y, z]).
(a) Show: if deg(f) > 2 then det(∂2f) is non-constant. (Hint: you can use the Euler formula

∑
xi∂if = d · f .)

(b) Prove: the points of V (f)∩V (det(∂2f)) are exactly the flexes of V (f). Moreover: pt ∈ V (f) is an ordinary flex
iff ipt(V (f), V (det(∂2f))) = 1.
(Hint: apply PGL(3) to set pt = (0 : 0 : 1) with the tangent line (y = 0). (How does this affect ∂2f?) Then we
can assume f(x, y, z) = zd−1y + azd−2x2 + y2(. . . ) + xy(. . . ) + x3(. . . ). Compute ∂2f |(0:0:1).)

(c) Conclude: every smooth curve of deg > 2 has a flex.
Prove: if all the flexes of a smooth curve are ordinary then their total number is d · 3(d− 2).

(7) Assume k = k̄, char(k) = 0. We classify the irreducible plane cubics.
(a) Show that a smooth plane cubic has only ordinary flexes. Conclude: a smooth cubic has precisely 9 flexes.
(b) Put one of the flexes to (0 : 1 : 0) with the tangent line (z = 0). Then the defining equation consists of monomials

y2z, yxz, x3, x2z, xz2, z3. Apply now a PGL(3,k) transformations to get rid of yzx, z3. Then arrive at the
Weierstraß normal form of smooth cubic: y2z = x(x− z)(x− λ · z), with λ 6= 0, 1.

(c) Prove: any irreducible singular cubic is PGL(3)-equivalent to one of: y2 = x3, y2 = x2 + x3.

(8) Fix some h, f, g ∈ m = (x, y) ⊂ k[x, y]. Prove: any of the following conditions ensures (h)m ∈ (f, g)m ⊂ k[x, y]m.
(a) V (f), V (g) are transverse at 0 (i.e. both are smooth and non-tangent) and h|0 = 0.
(b) V (f) is smooth at 0 and i0(h, f) ≥ i0(g, f).
(c) T(V (f),0) ∩ T(V (g),0) = {0} and ord0(h) ≥ ord0(f) + ord0(g)− 1.


