Introduction to Algebraic Curves

201.2.4451. Summer 2019 (D.Kerner)

Homework 6

(1) (a) Let $C \subset \mathbb{P}_{\mathbb{C}}^{2}$ be a smooth (projective, complex) curve. Prove: C is a real orientable compact manifold.
(b) Let $C=V\left(y^{2} z-x^{3}\right) \subset \mathbb{P}^{2}$. Prove: $\mathbb{k}(C) \cong \mathbb{k}\left(\mathbb{P}^{1}\right)$. For $\mathbb{k}=\mathbb{C}$ give an explicit homeomorphism $C \approx S^{2}$.
(c) Suppose a curve $C \subset \mathbb{P}^{2}$ is irreducible and $f \in \mathbb{k}(C)$ is regular at each point of C. Prove: f is constant.
(d) We have proved: if $X=\amalg X_{i}$, where $\left\{X_{i}\right\}$ are one-point sets, then $\mathbb{k}[X] \approx \prod_{\left(X, p t_{i}\right)}$. In particular, $\mathbb{k}[X]$ does not depend on the location of these points. Does this contradict the known fact: "two quadruples $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subset \mathbb{C}^{1}$ are related by an analytic automorphism of \mathbb{C} iff the corresponding cross-ratios coincide"?
(2) (a) Suppose two cubics intersect at nine distinct points, $\left\{p t_{i}\right\}$. Suppose $p t_{1}, \ldots, p t_{6}$ lie on one conic. Prove: $p t_{7}, p t_{8}, p t_{9}$ lie on a line.
(b) (Pascal theorem) Fix six points on a smooth conic, $p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}$. Consider the intersection points of lines, $z_{i j}:=\left\{\overline{p_{i} q_{j}} \cap \overline{p_{j} q_{i}}\right\}_{i \neq j}$. Prove: z_{12}, z_{13}, z_{23} lie on one line.
(c) (Pappus theorem) Fix two lines, $L, \tilde{L} \subset \mathbb{P}^{2}$ and the points $p_{1}, p_{2}, p_{3} \in L$ and $q_{1}, q_{2}, q_{3} \in \tilde{L}$, none of which is the intersection point $L \cap \tilde{L}$. Prove: the points $\left\{\overline{p_{i} q_{j}} \cap \overline{p_{j} q_{i}}\right\}_{i \neq j}$ lie on one line.
(d) Suppose two cubics intersect at the distinct points $p t_{1}, \ldots, p t_{9}$ and a third cubic passes through $p t_{1}, \ldots, p t_{8}$. Prove: it also passes through $p t_{9}$.
(3) We have defined the group law on a smooth cubic, $C \subset \mathbb{P}^{2}$. Check that $(C,+, 0)$ is indeed a commutative group. (For associativity see pg. 63-64 of Fulton.)
(a) Fix a line L such that $L \cap C=\left\{p_{1}, p_{2}, p_{3}\right\}$ are distinct points. For each p_{i} take the line $L_{i}=T_{\left(C, p_{i}\right)}$ and define q_{i} by the condition $L_{i} \cap C=\left\{2 p_{i}, q_{i}\right\}$. Prove: q_{1}, q_{2}, q_{3} lie on a line. (You can use question 2.)
(b) Prove: a line through two (distinct) flexes passes through a third flex. (These nine flexes form the Hesse configuration, see wiki.)
(c) Let $C \subset \mathbb{P}^{2}$ be a singular but irreducible cubic. Let $C_{s m o o t h} \subset C$ be the subset of smooth points. Fix some point $0 \in C_{\text {smooth }}$ and define the addition of points on $C_{\text {smooth }}$ as for smooth cubics. Check that $\left(C_{\text {smooth }},+, 0\right)$ is an abelian group.
(d) Let $C \subset \mathbb{P}^{2}$ be an irreducible (possibly singular) cubic. Fix two points $0,0^{\prime} \in C_{\text {smooth }}$ and define the corresponding additions. Define the point $q=\phi\left(0,0^{\prime}\right) \in C_{\text {smooth }}$. Prove that the map $\left(C_{s m o o t h},+, 0\right) \xrightarrow{p \rightarrow \phi(q, p)}$ $\left(C_{\text {smooth }},+^{\prime}, 0^{\prime}\right)$ is an isomorphism of abelian groups.
(4) Let C be a smooth cubic, and suppose $0 \in C$ is a flex.
(a) Prove: three points $p_{1}, p_{2}, p_{3} \in C$ lie on a line iff $p_{1}+p_{2}+p_{3}=0$. (What happens when the points coincide?)
(b) Prove: a point $p \in C$ is of order 2 in the abelian group iff the line $T_{(C, p)}$ passes through $0 \in C$. Find the points of order two for $C=V\left(y^{2} z-x(x-z)(x-\lambda z)\right), \lambda \neq 0,1,0=[0: 1: 0]$. Compare to hwk10, q.6(c).
(c) Show that the points of order two on C form the group $\mathbb{Z} /(2) \times \mathbb{Z} /(2)$.
(d) Prove: in the abelian group C there are precisely 9 elements of order 3 , counting 0 . (The same as in the complex case, when $C=\mathbb{C} / L$.) These elements correspond to flexes and they form a subgroup, isomorphic to $Z /(3) \times Z /(3)$.
(5) (a) Fix some points $p t_{1}, \ldots, p t_{4} \in \mathbb{P}^{2}$. What are the possible dimensions of $V\left(2, p t_{1}, \ldots, p t_{4}\right)$, depending on the location of the points? (Realize each of the possible dimensions by explicit point configurations.)
(b) The same question for $V\left(2, p t_{1}, \ldots, p t_{n}\right), n \geq 5$ and $V\left(3, p t_{1}, \ldots, p t_{6}\right)$.
(6) $(\mathbb{k}=\overline{\mathbb{k}})$ Fix a curve $C_{d e g=d}=V(f) \subset \mathbb{P}^{2}$ and a point $p t_{0}=\left(x_{0}, y_{0}, z_{0}\right) \notin C$. For any point $p t \in C$ take the line $L=\overline{p t_{0}, p t}$. How many tangents to C pass through $p t_{0}$?
(a) Prove: $i_{p t}(L, C)>1$ iff $\left\{f(p t)=0=x_{0} \partial_{x} f+y_{0} \partial_{y} f+z_{0} \partial_{z} f\right\}$.
(b) Prove: $i_{p t}(L, C)-1=i_{p t}\left(V(f), V\left(x_{0} \partial_{x} f+y_{0} \partial_{y} f+z_{0} \partial_{z} f\right)\right)$.
(c) Suppose C is smooth. Prove: the number of tangent lines to C that pass through $p t_{0} \notin C$ is $d(d-1)$. Here each line is counted with its multiplicity which is the degree of flex at the tangency point.
(d) Suppose $C_{d e g=d} \subset \mathbb{P}^{2}$ has a point of multiplicity d. Prove: C is reducible.
(e) Suppose $C_{d} \subset \mathbb{P}^{2}$ has r components, no multiple components, and the points of multiplicities $\left\{m_{i}\right\}$. Prove: $\sum\binom{m_{i}}{2} \leq\binom{ d-1}{2}+r-1 \leq\binom{ d}{2}$. (Hint: we have proved this for irreducible curves. Reduce the question to the irreducible components.)

