Introduction to Algebraic Curves

201.2.4451. Summer 2019 (D.Kerner)

Homework 7

- In this homework we assume $k = \bar{k}$. All varieties are irreducible. We use only the Zariski topology.
- (1) (a) Take a closed affine variety $X \subset k^n$. (Dis)Prove:
 - (i) A map $X \xrightarrow{\phi} \mathbb{k}^m$ is continuous iff it is the restriction of a polynomial map $\mathbb{k}^n \to \mathbb{k}^m$.
 - (ii) $\mathcal{O}_X(X) = \Bbbk[X].$
 - (iii) For $0 \neq f \in \Bbbk[X]$ holds: $Y := X \setminus V(f)$ is an affine variety and $\mathcal{O}_Y(Y) = \Bbbk[X][f^{-1}]$.
 - (b) Prove: if $\mathcal{U}' \subset \mathcal{U}$ then $\mathcal{O}_X(\mathcal{U}') \supseteq \mathcal{O}_X(\mathcal{U})$.
 - (c) Suppose $f \in \mathcal{O}_{(X,pt)}$. Prove: there exists an open neighborhood $pt \in \mathcal{U} \subseteq X$ such that $f \in \mathcal{O}_X(\mathcal{U})$. Prove: $\mathcal{O}_{(X,pt)} = \bigcup_{pt \in \mathcal{U} \subset X} \mathcal{O}_X(\mathcal{U})$.
 - (d) Let $a \in \mathcal{O}_X(\mathcal{U})$. Check that a is computable at each point of X and thus defines a function, $\mathcal{U} \xrightarrow{f_a} \Bbbk$. Prove: if f_a vanishes at each point of some open subset $\emptyset \neq \mathcal{U}' \subseteq \mathcal{U}$ then $a = 0 \in \mathcal{O}_X(\mathcal{U})$, i.e. vanishes as an element of this ring.

Give an example of an affine variety over a non-algebraically closed field \Bbbk , with $f \in \Bbbk[X]$ vanishing at each point of X, but $f \neq 0 \in \Bbbk[X]$.

- (e) For any variety X and some open subsets $\{\mathcal{U}_i\}$ prove: $\mathcal{O}_X(\cup \mathcal{U}_i) = \cap \mathcal{O}_X(\mathcal{U}_i)$ and $\mathcal{O}_X(\mathcal{U}) = \cap_{pt \in \mathcal{U}} \mathcal{O}_{(X,pt)}$.
- (2) (a) Let $X \subset \mathbb{P}^n$ be a closed subvariety and $\mathbb{k}^n = \mathcal{U}_i \subset \mathbb{P}^n$ an affine chart. Prove: the affinization map is an isomorphism of fields, $\mathbb{k}(X) \xrightarrow{\sim} \mathbb{k}(X \cap \mathcal{U}_i)$.
 - (b) Let X be a variety and $0 \neq f \in k(X)$. Prove: the set of poles of f is a closed subset in X.
 - (c) If $X \subseteq \mathbb{k}^n$, $Y \subseteq \mathbb{k}^m$ are closed subvarieties then morphisms $X \to Y$ are exactly the polynomial maps $\mathbb{k}^n \xrightarrow{\phi} \mathbb{k}^m$, s.t. $\phi(X) \subseteq Y$. (We have proved this partially in the class.)
- (3) (a) Let X be an affine variety and $0 \neq f \in \mathbb{k}[X]$. Define the subset $\mathcal{U}_f := \{f \neq 0\} \subset X$. Prove: $\mathcal{O}_{\mathcal{U}_f}(\mathcal{U}_f) = \mathbb{k}[X][\frac{1}{f}] := \mathbb{k}[X][y]/(y \cdot f - 1)$ and \mathcal{U}_f is an affine variety.
 - (b) Let $X \subset \mathbb{P}^n$ be a projective variety and $V_f = \{f = 0\} \subset \mathbb{P}^n$ a hypersurface such that $X \not\subseteq V_f$. Prove: $\mathcal{U}_f = X \setminus (X \cap V_f)$ is an affine variety and identify $\mathbb{k}[\mathcal{U}_f]$. (Hint: in the case $f = x_0$ one has $\mathbb{k}[\mathcal{U}_{x_0}] = \{\frac{\bar{a}}{\bar{x}_0^n} | deg(a) = n\}$, here \bar{a}, \bar{x}_0 are the images of a, x_0 in $\mathbb{k}[X]$.)
 - (c) Let $\Bbbk[Y] \xrightarrow{\phi} \Bbbk[X]$ be a ring homomorphism. Verify: if $\phi(f)$ is a unit in $\Bbbk[X]$ then ϕ extends (uniquely) to $\Bbbk[Y][\frac{1}{f}]$. Otherwise ϕ extends uniquely to a homomorphism $\Bbbk[Y][\frac{1}{f}] \to \Bbbk[X][\frac{1}{f}]$. Give the geometric interpretation.
 - (d) Prove: $X = \mathbb{k}^2 \setminus \{(0,0)\}$ is a variety but not an affine one. (Hint: what is $\mathcal{O}_X(X)$?)
 - (e) Prove: any variety is a finite union of affine varieties.
- (4) (a) (Dis)Prove:
 - (i) The projection $\mathbb{k}^{n+m} \to \mathbb{k}^m$ is a morphism.
 - (ii) The projection $\mathbb{P}^{n+m} \setminus \{x_0 = 0 = \cdots = x_n\} \to \mathbb{P}^n$, $(x_0 : \cdots : x_{n+m}) \to (x_0 : \cdots : x_n)$ is a morphism.
 - (iii) If $X \subset Y$ be an open/closed subvariety then the inclusion map is a morphism.
 - (iv) The composition of morphisms is a morphism.
 - (v) The restriction of a morphism to a subvariety is a morphism.
 - (b) Let $X \xrightarrow{\phi} Y$ be a set-theoretic map of varieties. Fix some open covers, $X = \bigcup \mathcal{U}_i^{(X)}$, $Y = \bigcup \mathcal{U}_i^{(Y)}$, satisfying: $f(\mathcal{U}_i^{(X)}) \subseteq \mathcal{U}_i^{(Y)}$. Prove: ϕ is a morphism iff all the restrictions $\mathcal{U}_i^{(X)} \xrightarrow{f|_{\mathcal{U}_i^{(X)}}} \mathcal{U}_i^{(Y)}$ are morphisms.
 - $f(\mathcal{U}_i) \subseteq \mathcal{U}_i$ Prove: φ is a morphism in an the restrictions $\mathcal{U}_i \longrightarrow \mathcal{U}_i$ are morphisms.
 - (c) Let $x \in X$ and $y \in Y$ be some points on varieties. Suppose the local rings are isomorphic, $\mathcal{O}_{(X,x)} \xrightarrow{\sim} \mathcal{O}_{(Y,y)}$. Prove: some neighborhoods $x \in \mathcal{U}_X \subseteq X$, $y \in \mathcal{U}_Y \subseteq Y$ are isomorphic, $\mathcal{U}_X \approx \mathcal{U}_Y$.
 - (d) Let $X \xrightarrow{\phi} Y$ be a morphism of affine varieties and $\Bbbk[X] \xleftarrow{\phi^*} \Bbbk[Y]$ the induced homomorphism of rings. (Dis)Prove: ϕ is injective/surjective iff ϕ^* is surjective/injective. (Check all the possible statements.)
 - (e) Fix a point on a (smooth) conic, $pt \in C \subset \mathbb{P}^2$ and a line $pt \notin L \subset \mathbb{P}^2$. Define the map $C \setminus \{pt\} \xrightarrow{\phi} L$ by sending $p \in C$ to $\overline{p, pt} \cap L$. Is this map surjective? Prove that this map extends to an isomorphism $C \xrightarrow{\sim} \mathbb{P}^1$.