Introduction to Algebraic Curves

201.2.4451. Summer 2019 (D.Kerner)

Homework 8

In this homework we assume $\mathbb{k}=\overline{\mathbb{k}}$. All varieties are irreducible. We use only the Zariski topology.
(1) (a) Let $\mathbb{k} \subset \mathbb{K}$ be a field extension. Prove:
(i) $x_{1}, \ldots, x_{n} \in \mathbb{K}$ is a minimal set such that \mathbb{K} is algebraic over $\mathbb{k}\left(x_{1}, \ldots, x_{n}\right)$ iff $x_{1}, \ldots, x_{n} \in \mathbb{K}$ is a maximal set of algebraically independent elements of \mathbb{K}. Such a set is called: 'a transcendence basis'.
(ii) Any algebraically independent set can be completed to a transcendence basis.
(iii) Any set $x_{1}, \ldots, x_{n} \in \mathbb{K}$ such that \mathbb{K} is algebraic over $\mathbb{k}\left(x_{1}, \ldots, x_{n}\right)$ contains a transcendence basis.
(iv) $t r . d e g_{\mathbb{k}} \mathbb{K}$ is the number of elements in any transcendence basis.
(b) Verify: $\operatorname{dim}\left(\mathbb{k}^{n}\right)=n=\operatorname{dim}\left(\mathbb{P}^{n}\right)$. $\quad \operatorname{dim}(X \times Y)=\operatorname{dim}(X)+\operatorname{dim}(Y)$.
(c) Prove: $\operatorname{dim}(X)<\operatorname{dim}(Y)$ for a closed subvariety $X \subset Y$.
(d) Compute $\operatorname{dim}(V(f))$ for a non-constant $f \in \mathbb{k}[\underline{x}]$.
(e) Let $\mathbb{k} \subset \mathbb{K}$ be a field extension with $\operatorname{tr}^{(d e} g_{\mathbb{k}}(\mathbb{K})=n$. Suppose \mathbb{K} is generated by N elements, i.e. $\mathbb{K}=$ $\mathbb{k}^{(}\left(a_{1}, \ldots, a_{N}\right)$. Prove: $\mathbb{K}=\mathbb{k}(X)$ for some closed subvariety $X \subset \mathbb{k}^{N}$. Prove: there exists a hypersurface $V \subset \mathbb{k}^{n+1}$ satisfying: $\mathbb{k}(V)=\mathbb{K}$. (Geometrically: every variety is birationally equivalent to a hypersurface.)
(2) Fix an algebraic curve $C \subset \mathbb{k}^{n}$ and some generators of the defining ideal, $I_{C}=\left\langle f_{1}, \ldots, f_{N}\right\rangle$. Prove: $p t \in C$ is a smooth point iff the matrix of derivatives of $\left\{f_{i}\right\}$ at $p t$ is of expected rank. (Part of this was proved in the lecture.)
(3) (a) Define a map $\mathbb{P}^{1} \xrightarrow{\nu_{d}} \mathbb{P}^{d}$ by $\left(x_{0}: x_{1}\right) \rightarrow\left(x_{0}^{d}: x_{0}^{d-1} x_{1}: \cdots: x_{0} x_{1}^{d-1}: x_{1}^{d}\right)$, for $d \geq 2$. Prove: ν_{d} is an injective morphism and its image can be defined as $\left\{\underline{z} \in \mathbb{P}^{d} \left\lvert\, \operatorname{rank}\left[\begin{array}{ccc}z_{0} & \cdots & z_{d-1} \\ z_{1} & \cdots & z_{d}\end{array}\right]<2\right.\right\}$. This embedded curve is called the rational normal curve. Verify: $\nu_{d}\left(\mathbb{P}^{1}\right)$ does not lie in any hyperplane of \mathbb{P}^{d}.
(b) Construct an explicit inverse $\nu_{d}\left(\mathbb{P}^{1}\right) \rightarrow \mathbb{P}^{1}$. (Write explicit formulas.)
(c) Describe/identify $\nu_{d}\left(\mathbb{P}^{1}\right) \cap \mathcal{U}_{i}$, for all the standard affine charts, $\mathcal{U}_{0}, \ldots, \mathcal{U}_{n} \subset \mathbb{P}^{n}$. Write down $\mathbb{k}\left[\nu_{d}\left(\mathbb{P}^{1}\right) \cap \mathcal{U}_{i}\right]$.
(d) (Dis)Prove: $\mathbb{k}\left(\nu_{d}\left(\mathbb{P}^{1}\right)\right) \xrightarrow{\sim} \mathbb{k}\left(\mathbb{P}^{1}\right) ; \mathbb{k}\left[\nu_{d}\left(\mathbb{P}^{1}\right)\right] \xrightarrow{\sim} \mathbb{k}\left[\mathbb{P}^{1}\right] ; \mathbb{k}\left[\nu_{d}\left(\mathbb{P}^{1}\right) \cap \mathcal{U}_{i}\right] \xrightarrow{\sim} \mathbb{k}\left[\mathbb{k}^{1}\right]$ for some \mathcal{U}_{i} (for which one?).
(e) Take the projection $\mathbb{P}^{d} \xrightarrow[\rightarrow \rightarrow \mathbb{T}^{1}, d]{\pi_{0}},\left(z_{0}: \cdots: z_{d}\right) \rightarrow\left(z_{0}: z_{d}\right)$. Prove: this rational map restricts to a morphism $\nu_{d}\left(\mathbb{P}^{1}\right) \xrightarrow{\pi_{0, d}} \mathbb{P}^{1}$. What is the degree and the ramification data of $\pi_{0, d}$?
(f) Repeat this for the map $\mathbb{P}^{d} \xrightarrow{\pi_{i, j}} \mathbb{P}^{1},\left(z_{0}: \cdots: z_{d}\right) \rightarrow\left(z_{i}: z_{j}\right)$, for any $0 \leq i<j \leq d$. What do you get for $j-i=1$?
(g) Take the projection $\mathbb{P}^{d} \xrightarrow{\pi_{0, i, d}} \mathbb{P}^{2},\left(z_{0}: \cdots: z_{d}\right) \rightarrow\left(z_{0}: z_{i}: z_{d}\right)$. Prove: this rational map restricts to a birational morphism $\nu_{d}\left(\mathbb{P}^{1}\right) \xrightarrow{\pi} C \subset \mathbb{P}^{2}$. What is the degree of C ? (One way to compute the degree: take a linear form $l(y)$ on \mathbb{P}^{2}, pull it back to $\mathbb{k}\left[\mathbb{P}^{1}\right]$ and take the divisor of its zeros.) Write down the defining equation of C and describe its singularities.
(4) (a) Let C be a curve and $p t \in C$. Prove: $\operatorname{Frac}\left(\mathcal{O}_{(C, p t)}\right)=\mathbb{k}(C)$.
(b) We have proved: every rational map of a curve extends to all the smooth points. Go over all the details.
(c) Let C, D be projective smooth curves. Prove: $\mathbb{k}(C) \approx \mathbb{k}(D)$ iff C, D are isomorphic.
(d) Let C be smooth and D be projective. Prove: dominant morphisms $C \rightarrow D$ correspond bijectively to homomorphisms $H o m_{k}(\mathbb{k}(D), \mathbb{k}(C))$. (A morphism/rational map is called dominant if its image is dense.)
(e) Suppose $C \xrightarrow{\phi} D$ is a non-constant rational map of curves. Prove: ϕ is dominant (i.e. $\phi(C)$ is dense in D) and $\mathbb{k}(C)$ is a finite algebraic extension of $\mathbb{k}(D)$. Prove: for any $p t \in D$ the fibre $\phi_{p t}^{-1} \subset C$ is a finite set.
(f) Fix two points on curves, $p \in C, q \in D$. Prove: any morphism $\mathcal{O}_{(C, p)} \xrightarrow{\phi} \mathcal{O}_{(D, q)}$ induces a rational map $D \rightarrow C$ with $q \rightarrow p$. Prove: if ϕ is an isomorphism then this rational map is birational.
(g) Prove: two smooth projective curves are isomorphic iff exists some $p \in C, q \in D$ with $\mathcal{O}_{(D, q)} \approx \mathcal{O}_{(C, p)}$.
(h) Show an infinite collection of pairwise non-isomorphic DVR's.
(5) A rational parametrization of a curve C is a birational morphism $\mathbb{k}^{1} \rightarrow C$. Curves that admit a rational parametrization are called rational. Construct explcit rational parametrizations of the following plane curves by setting $y=t x$:
i. $V\left(x^{4}+y^{4}-x^{2} y\right)$.
ii. $V\left(x^{3}+y^{3}+x^{2}-2 y^{2}\right)$.
iii. $V\left(x^{4}+y^{4}+x^{3}+y^{3}\right)$.

