Introduction to Algebraic Curves

201.2.4451. Summer 2019 (D.Kerner)

Homework 8

In this homework we assume $k = \bar{k}$. All varieties are irreducible. We use only the Zariski topology.

- (1) (a) Let $\mathbb{k} \subset \mathbb{K}$ be a field extension. Prove:
 - (i) $x_1, \ldots, x_n \in \mathbb{K}$ is a minimal set such that \mathbb{K} is algebraic over $\Bbbk(x_1, \ldots, x_n)$ iff $x_1, \ldots, x_n \in \mathbb{K}$ is a maximal set of algebraically independent elements of \mathbb{K} . Such a set is called: 'a transcendence basis'.
 - (ii) Any algebraically independent set can be completed to a transcendence basis.
 - (iii) Any set $x_1, \ldots, x_n \in \mathbb{K}$ such that \mathbb{K} is algebraic over $\mathbb{k}(x_1, \ldots, x_n)$ contains a transcendence basis.
 - (iv) $tr.deg_{\mathbb{k}}\mathbb{K}$ is the number of elements in any transcendence basis.
 - (b) Verify: $dim(\mathbb{k}^n) = n = dim(\mathbb{P}^n)$. $dim(X \times Y) = dim(X) + dim(Y)$.
 - (c) Prove: dim(X) < dim(Y) for a closed subvariety $X \subset Y$.
 - (d) Compute dim(V(f)) for a non-constant $f \in \mathbb{k}[\underline{x}]$.
 - (e) Let $\mathbb{k} \subset \mathbb{K}$ be a field extension with $tr.deg_{\mathbb{k}}(\mathbb{K}) = n$. Suppose \mathbb{K} is generated by N elements, i.e. $\mathbb{K} = \mathbb{k}(a_1, \ldots, a_N)$. Prove: $\mathbb{K} = \mathbb{k}(X)$ for some closed subvariety $X \subset \mathbb{k}^N$. Prove: there exists a hypersurface $V \subset \mathbb{k}^{n+1}$ satisfying: $\mathbb{k}(V) = \mathbb{K}$. (Geometrically: every variety is birationally equivalent to a hypersurface.)
- (2) Fix an algebraic curve $C \subset \mathbb{k}^n$ and some generators of the defining ideal, $I_C = \langle f_1, \ldots, f_N \rangle$. Prove: $pt \in C$ is a smooth point iff the matrix of derivatives of $\{f_i\}$ at pt is of expected rank. (Part of this was proved in the lecture.)
- (3) (a) Define a map $\mathbb{P}^1 \xrightarrow{\nu_d} \mathbb{P}^d$ by $(x_0 : x_1) \to (x_0^d : x_0^{d-1} x_1 : \dots : x_0 x_1^{d-1} : x_1^d)$, for $d \ge 2$. Prove: ν_d is an injective morphism and its image can be defined as $\{\underline{z} \in \mathbb{P}^d | rank \begin{bmatrix} z_0 & \dots & z_d \\ z_1 & \dots & z_d \end{bmatrix} < 2\}$.
 - This embedded curve is called the rational normal curve. Verify: $\nu_d(\mathbb{P}^1)$ does not lie in any hyperplane of \mathbb{P}^d .
 - (b) Construct an explicit inverse $\nu_d(\mathbb{P}^1) \to \mathbb{P}^1$. (Write explicit formulas.)
 - (c) Describe/identify $\nu_d(\mathbb{P}^1) \cap \mathcal{U}_i$, for all the standard affine charts, $\mathcal{U}_0, \ldots, \mathcal{U}_n \subset \mathbb{P}^n$. Write down $\mathbb{k}[\nu_d(\mathbb{P}^1) \cap \mathcal{U}_i]$.
 - (d) (Dis)Prove: $\mathbb{k}(\nu_d(\mathbb{P}^1)) \xrightarrow{\sim} \mathbb{k}(\mathbb{P}^1); \mathbb{k}[\nu_d(\mathbb{P}^1)] \xrightarrow{\sim} \mathbb{k}[\mathbb{P}^1]; \mathbb{k}[\nu_d(\mathbb{P}^1) \cap \mathcal{U}_i] \xrightarrow{\sim} \mathbb{k}[\mathbb{k}^1]$ for some \mathcal{U}_i (for which one?).
 - (e) Take the projection $\mathbb{P}^d \xrightarrow{\pi_{0,d}} \mathbb{P}^1$, $(z_0 : \cdots : z_d) \to (z_0 : z_d)$. Prove: this rational map restricts to a morphism $\nu_d(\mathbb{P}^1) \xrightarrow{\pi_{0,d}} \mathbb{P}^1$. What is the degree and the ramification data of $\pi_{0,d}$?
 - (f) Repeat this for the map $\mathbb{P}^d \xrightarrow{\pi_{i,j}} \mathbb{P}^1$, $(z_0 : \cdots : z_d) \to (z_i : z_j)$, for any $0 \le i < j \le d$. What do you get for j i = 1?
 - (g) Take the projection $\mathbb{P}^{d} \xrightarrow{\pi_{0,i,d}} \mathbb{P}^2$, $(z_0 : \cdots : z_d) \to (z_0 : z_i : z_d)$. Prove: this rational map restricts to a birational morphism $\nu_d(\mathbb{P}^1) \xrightarrow{\pi} C \subset \mathbb{P}^2$. What is the degree of C? (One way to compute the degree: take a linear form $l(\underline{y})$ on \mathbb{P}^2 , pull it back to $\mathbb{k}[\mathbb{P}^1]$ and take the divisor of its zeros.) Write down the defining equation of C and describe its singularities.
- (4) (a) Let C be a curve and $pt \in C$. Prove: $Frac(\mathcal{O}_{(C,pt)}) = \Bbbk(C)$.
 - (b) We have proved: every rational map of a curve extends to all the smooth points. Go over all the details.
 - (c) Let C, D be projective smooth curves. Prove: $\Bbbk(C) \approx \Bbbk(D)$ iff C, D are isomorphic.
 - (d) Let C be smooth and D be projective. Prove: dominant morphisms $C \to D$ correspond bijectively to homomorphisms $Hom_{\mathbb{K}}(\mathbb{K}(D), \mathbb{K}(C))$. (A morphism/rational map is called dominant if its image is dense.)
 - (e) Suppose $C \xrightarrow{\phi} D$ is a non-constant rational map of curves. Prove: ϕ is dominant (i.e. $\phi(C)$ is dense in D) and $\Bbbk(C)$ is a finite algebraic extension of $\Bbbk(D)$. Prove: for any $pt \in D$ the fibre $\phi_{pt}^{-1} \subset C$ is a finite set.
 - (f) Fix two points on curves, $p \in C$, $q \in D$. Prove: any morphism $\mathcal{O}_{(C,p)} \xrightarrow{\phi} \mathcal{O}_{(D,q)}$ induces a rational map $D \dashrightarrow C$ with $q \to p$. Prove: if ϕ is an isomorphism then this rational map is birational.
 - (g) Prove: two smooth projective curves are isomorphic iff exists some $p \in C$, $q \in D$ with $\mathcal{O}_{(D,q)} \approx \mathcal{O}_{(C,p)}$.
 - (h) Show an infinite collection of pairwise non-isomorphic DVR's.
- (5) A rational parametrization of a curve C is a birational morphism $k^1 \to C$. Curves that admit a rational parametrization are called rational. Construct explicit rational parametrizations of the following plane curves by setting y = tx: i. $V(x^4 + y^4 - x^2y)$. ii. $V(x^3 + y^3 + x^2 - 2y^2)$. iii. $V(x^4 + y^4 + x^3 + y^3)$.