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Homework 9

(1) (a) Assuming the existence of resolution of singularities of curves, prove its uniqueness. (If C̃1, C̃2 → C are two

resolutions then there exists φ : C̃1
∼−→ C̃2 inducing a commutative triangle, and this φ is unique.)

(b) Prove: any irreducible singular pane cubic is birational to P1.
(c) Let C ⊂ P2 be an irreducible curve of degree d. Suppose pt ∈ C and multpt(C) = d− 1. Prove: C has no other

singular points and is birational to P1.

(2) (a) Let C = V (x2 − y3, y2 − z3) ⊂ k
3. Find a birational morphism k→ C. Prove that C cannot be embedded into

k
2. (No neighborhood of (0, 0, 0) ∈ C is isomorphic to an open subvariety of a plane curve.)

(b) Let C = V (x21 − x32, x22 − x33, . . . , x2n−1 − x3n) ⊂ k
n. Prove: C is non-embeddable into kn−1.

(c) Let Z ⊂ k
n be the union of coordinate axes. Write down I(C) ⊂ k[x]. Prove: Z cannot be embedded into

k
n−1.

(3) (a) Let X be a variety and k 63 f ∈ k(X). Prove: the field k(f) (which is a subfield of k(X)) is isomorphic to

k(P1). Thus choosing any such f corresponds to an embedding k(P1)
i
↪→ k(X).

(b) Prove: any variety X (of positive dimension) admits a dominant rational map X 99K P1.
(c) Prove: any smooth projective curve admits a surjective morphism X → P1.

(4) We have proved (algebraically) that every curve is birational to a plane curve. Now we prove: for a projective curve

C and pt ∈ C exists a birational morphism C
φ→ C ′ ⊂ P2 satisfying: φ−1φ(pt) = pt.

(a) We can assume C ⊂ Pn+1. Fix the homogeneous coordinates (t, x1, . . . , xn, z) such that pt = (0 : · · · : 1) and
C ∩ V (t, z) = ∅ and C ∩ V (t) is finite. Then k(C) is algebraic over k(u) for u = t

z |C .

(b) For each λ = (λ1, . . . , λn) ∈ kn define C
φλ→ P2 by φλ(t : x1 : · · · : xn : z) = (t :

∑
λixi : z). Check that φλ is a

well defined morphism, φλ(pt) = (0 : 0 : 1). Define C ′ = φλ(C) ⊂ P2.

(c) Prove that λ can be chosen such that φλ is a birational morphism and φ−1λ (0 : 0 : 1) = pt.

(5) (a) Suppose two holomorphic maps of compact Riemann surfaces, X
f,g→ Y , coincide on an infinite set of points.

Prove that they coincide on X.

(b) Let X
f→ Y be a non-constant holomorphic map. Prove that for any y ∈ Y the set of preimages, f−1(y), is

discrete.

(c) Suppose a holomorphic map X
f→ Y is a bijection of sets. Prove: f is holomorphically invertible.

(d) Prove: for any holomorphic map X
f→ Y and any point x ∈ X there exist local (holomorphic) coordinates on

(X,x), for which the map is f(z) = zn. Here n does not depend on the choice of coordinates. (It is called the
order/multiplicity of f at x).

(e) Let X
f→ Y a holomorphic map, with X compact. Prove: ordx(f) > 1 only for a finite number of points.

(f) Let f be a non-constant meromorphic function on a compact Riemann surface. Prove:
∑
x∈X

ordx(f) = 0.

(6) In the lecture we saw how to “plug the holes” in a punctured Riemann surface.
(a) Prove that plugging the holes preserves Hausdorffness and path-connectedness.
(b) Let X be a Riemann surface with punctures, so that the surface X, obtained by plugging all the holes in X, is

a compactification of X. Prove that this compactification is unique, i.e. for any two compact Riemann surfaces

X1 ⊃ X ⊂ X2 holds: X1
∼−→ X2.

(c) Let C ⊂ Cn be a singular algebraic curve and let X be the Riemann surface obtained by puncturing the singular

points of C and plugging the holes. Take the natural projection X
π→ C. Fix a point c ∈ C and some point

x ∈ π−1(c). Construct the natural maps O(Cn,c) → O(C,c) → O(X,x). Are they injective/surjective?

(7) Go over all the details of the proof of the formula for the genus of plane curves with ordinary multiple points,
g(Cd,{mi}).


