Introduction to Algebraic Curves

201.2.4451. Summer 2019 (D.Kerner)

Homework 9

- (1) (a) Assuming the existence of resolution of singularities of curves, prove its uniqueness. (If $\tilde{C}_1, \tilde{C}_2 \to C$ are two resolutions then there exists $\phi: \tilde{C}_1 \xrightarrow{\sim} \tilde{C}_2$ inducing a commutative triangle, and this ϕ is unique.)
 - (b) Prove: any irreducible singular pane cubic is birational to \mathbb{P}^1 .
 - (c) Let $C \subset \mathbb{P}^2$ be an irreducible curve of degree d. Suppose $pt \in C$ and $mult_{pt}(C) = d 1$. Prove: C has no other singular points and is birational to \mathbb{P}^1 .
- (2) (a) Let $C = V(x^2 y^3, y^2 z^3) \subset k^3$. Find a birational morphism $k \to C$. Prove that C cannot be embedded into (a) Let C = V(x = g, g = z) ⊂ k : I find a birational morphism k = VC. I fove that C cannot be embedded into k². (No neighborhood of (0,0,0) ∈ C is isomorphic to an open subvariety of a plane curve.)
 (b) Let C = V(x₁² - x₂³, x₂² - x₃³, ..., x_{n-1}² - x_n³) ⊂ kⁿ. Prove: C is non-embeddable into kⁿ⁻¹.
 (c) Let Z ⊂ kⁿ be the union of coordinate axes. Write down I(C) ⊂ k[x]. Prove: Z cannot be embedded into

 - \mathbb{k}^{n-1} .
- (3) (a) Let X be a variety and $k \not\supseteq f \in k(X)$. Prove: the field k(f) (which is a subfield of k(X)) is isomorphic to $\Bbbk(\mathbb{P}^1)$. Thus choosing any such f corresponds to an embedding $\Bbbk(\mathbb{P}^1) \xrightarrow{i} \Bbbk(X)$.
 - (b) Prove: any variety X (of positive dimension) admits a dominant rational map $X \dashrightarrow \mathbb{P}^1$.
 - (c) Prove: any smooth projective curve admits a surjective morphism $X \to \mathbb{P}^1$.
- (4) We have proved (algebraically) that every curve is birational to a plane curve. Now we prove: for a projective curve C and $pt \in C$ exists a birational morphism $C \xrightarrow{\phi} C' \subset \mathbb{P}^2$ satisfying: $\phi^{-1}\phi(pt) = pt$.
 - (a) We can assume $C \subset \mathbb{P}^{n+1}$. Fix the homogeneous coordinates (t, x_1, \ldots, x_n, z) such that $pt = (0 : \cdots : 1)$ and $C \cap V(t,z) = \emptyset$ and $C \cap V(t)$ is finite. Then $\Bbbk(C)$ is algebraic over $\Bbbk(u)$ for $u = \frac{t}{z}|_C$.
 - (b) For each $\underline{\lambda} = (\lambda_1, \dots, \lambda_n) \in \mathbb{k}^n$ define $C \xrightarrow{\phi_{\underline{\lambda}}} \mathbb{P}^2$ by $\phi_{\underline{\lambda}}(t : \underline{x_1 : \dots : x_n : z}) = (t : \sum \lambda_i x_i : z)$. Check that $\phi_{\underline{\lambda}}$ is a well defined morphism, $\phi_{\lambda}(pt) = (0:0:1)$. Define $C' = \overline{\phi_{\lambda}(C)} \subset \mathbb{P}^2$.
 - (c) Prove that $\underline{\lambda}$ can be chosen such that $\phi_{\underline{\lambda}}$ is a birational morphism and $\phi_{\underline{\lambda}}^{-1}(0:0:1) = pt$.
- (5) (a) Suppose two holomorphic maps of compact Riemann surfaces, $X \xrightarrow{f,g} Y$, coincide on an infinite set of points. Prove that they coincide on X.
 - (b) Let $X \xrightarrow{f} Y$ be a non-constant holomorphic map. Prove that for any $y \in Y$ the set of preimages, $f^{-1}(y)$, is discrete.
 - (c) Suppose a holomorphic map $X \xrightarrow{f} Y$ is a bijection of sets. Prove: f is holomorphically invertible.
 - (d) Prove: for any holomorphic map $X \xrightarrow{f} Y$ and any point $x \in X$ there exist local (holomorphic) coordinates on (X, x), for which the map is $f(z) = z^n$. Here n does not depend on the choice of coordinates. (It is called the order/multiplicity of f at x).
 - (e) Let $X \xrightarrow{f} Y$ a holomorphic map, with X compact. Prove: $ord_x(f) > 1$ only for a finite number of points.
 - (f) Let f be a non-constant meromorphic function on a compact Riemann surface. Prove: $\sum_{x \in X} ord_x(f) = 0.$
- (6) In the lecture we saw how to "plug the holes" in a punctured Riemann surface.
 - (a) Prove that plugging the holes preserves Hausdorffness and path-connectedness.
 - (b) Let X be a Riemann surface with punctures, so that the surface \overline{X} , obtained by plugging all the holes in X, is a compactification of X. Prove that this compactification is unique, i.e. for any two compact Riemann surfaces $\overline{X}_1 \supset X \subset \overline{X}_2$ holds: $\overline{X}_1 \xrightarrow{\sim} \overline{X}_2$.
 - (c) Let $C \subset \mathbb{C}^n$ be a singular algebraic curve and let X be the Riemann surface obtained by puncturing the singular points of C and plugging the holes. Take the natural projection $X \xrightarrow{\pi} C$. Fix a point $c \in C$ and some point $x \in \pi^{-1}(c)$. Construct the natural maps $\mathcal{O}_{(\mathbb{C}^n,c)} \to \mathcal{O}_{(C,c)} \to \mathcal{O}_{(X,x)}$. Are they injective/surjective?
- (7) Go over all the details of the proof of the formula for the genus of plane curves with ordinary multiple points, $g(C_{d,\{m_i\}}).$