Answers to the Quiz

Question 1

Recall that $\log (1+z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ where $a_{0}=0, a_{1}=1$ and $a_{2}=-\frac{1}{2}$. Thus $\log \left(1+z^{3}\right)=\sum_{n=0}^{\infty} a_{n} z^{3 n}$, Hence

$$
\log \left(1+z^{3}\right)-z^{3}=-\frac{1}{2} z^{6}+\sum_{n \geq 7} b_{n} z^{n}
$$

for some coefficients b_{n} (i.e. the first non-zero coefficient is for z^{6}. In particular, $\log \left(1+z^{3}\right)-z^{3}=z^{6} g(z)$ for some analytic $g(z)$ so that $g(0) \neq 0$. Thus

$$
f(z)=\frac{z^{7}}{z^{6} g(z)}=z \frac{1}{g(z)} .
$$

So the order of 0 is 1

Question 2

It is easy to see that $\gamma=\left\{z \in \mathbb{C}:|z|=2,0 \leq \arg (z) \leq \frac{\pi}{6}\right\}$. We parametrize $\gamma:[0, \pi / 6] \rightarrow \mathbb{C}, \gamma(t)=2 e^{i t}$. The formula for $\sqrt[4]{z}$ in the question maps 1 to -1 , hence its formula is

$$
\sqrt[4]{R e^{i \theta}}=\sqrt[4]{R} e^{i(\theta / 4+\pi)}
$$

where $0 \leq \theta<\pi$. The function z^{3} maps points with $0 \leq \arg (z) \leq \frac{\pi}{6}$ to points where $0 \leq \arg (z) \leq \frac{\pi}{2}$. In particular, $\sqrt[4]{z^{3}}=\sqrt[4]{z^{3}}$ on γ (note that this is not true in all the domain of the fourth root). Then

$$
\int_{\gamma} \frac{d z}{\sqrt[4]{z^{3}}}=-\int_{0}^{\pi / 6} \frac{2 i e^{i t}}{\sqrt[4]{8} e^{i 3 t / 4+i \pi}} d t=\sqrt[4]{2} i \int_{0}^{\pi / 6} e^{i t / 4} d t=\left.4 \sqrt[4]{2} e^{i t / 4}\right|_{t=0} ^{t=\pi / 6}=4 \sqrt[4]{2}\left(e^{i \pi / 24}-1\right)
$$

The minus in the first equality is because we are told to integrate clockwise.

Second Solution

The inverse function derivative theorem states that $f^{-1 \prime}(z)=\frac{1}{f^{\prime}\left(f^{-1}(z)\right)}$.
In particular, for the function $g(z)=\sqrt[4]{z}$ which is an inverse for z^{4}. The derivative at z is

$$
\begin{gathered}
g^{\prime}(z)=\frac{1}{4(\sqrt[4]{z})^{3}} \\
(\sqrt[4]{z})^{3}=\left(\sqrt[4]{R e^{i \theta}}\right)^{3}=\sqrt[4]{R^{3}} e^{i 3 \theta / 4+3 \pi}=\sqrt[4]{R^{3}} e^{3 \theta / 4+\pi}=\sqrt[4]{z^{3}}
\end{gathered}
$$

Note that in general we can't just switch between taking a fourth root and doing a power of 3, and the reason we can do it here, is because $0 \leq \theta \leq \pi / 6$.

Thus

$$
\int_{\gamma} \frac{d z}{\sqrt[4]{z^{3}}}=\int_{\gamma} \frac{d z}{\sqrt[4]{z}^{3}}=4 \int_{\gamma} \frac{d z}{4 \sqrt[4]{z}^{3}}=4 \sqrt[4]{2}\left(e^{i \pi / 24}-1\right)
$$

Where the second last inequality is due to the fundamental theorem of calculus for the complex numbers.

Question 3

There are many solutions to this question.

Using the fact that f is analytic

We expand f to a power series around 0 , and note that from what we saw in class, the series converges in the ball of radius 1. $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$.

On the one hand $f\left(\frac{1+i}{3} z\right)=\sum_{n=0}^{\infty} a_{n}\left(\frac{1+i}{3}\right)^{n} z^{n}$. On the other hand, the coefficients of the series for f are unique, thus for all $n=0,1,2, \ldots$ we have that

$$
a_{n}=\left(\frac{1+i}{3}\right)^{n} a_{n}
$$

or

$$
\left(1-\left(\frac{1+i}{3}\right)^{n}\right) a_{n}=0
$$

By the fact that $f(0)=0$ we get that $a_{0}=0$. Furthermore, since since $\left|\left(\frac{1+i}{3}\right)^{n}\right|<1$, then $\left(1-\left(\frac{1+i}{3}\right)^{n}\right) \neq 0$ for all $n \geq 1$. Thus for all $n, a_{n}=0$, and $f(z)$ is the zero function. In particular $f\left(\frac{1+i}{3}\right)=0$.

Another solution

We restrict f to the closed ball $\overline{\text { Ball }_{1 / 2}(0)}$. By the maximum principle, the maximum of f in this restricted domain is at $\partial \operatorname{Ball}_{1 / 2}(0)$. Denote a point where f get's a maximum by z_{0}. However, since $f\left(z_{0}\right)=f\left(\frac{1+i}{3} z_{0}\right)$, then f get's another maximum in the interior of the ball. Thus by the maximum principle, f is a constant in this restricted domain. By the uniqueness theorem, f is a constant in all $\operatorname{Ball}_{1}(0)$. We know that $f(0)=0$ thus $f\left(\frac{1+i}{3}\right)=0$.

Another solution

Assume towards contradiction that f is not the zero fucntion and let $\operatorname{ord}_{0}(f)=p \geq 1$. Then $f(z)=$ $z^{p} g(z)$, for some analytic g so that $g(0) \neq 0$. Now compare $f(z)=f((1+i) z / 3)$, to get:

$$
(1+i / 3)^{p} g(0)=g(0)
$$

Thus we got $g(0)=0$ a contradiction.

Another solution: Using continuity only

We prove that f is the constant 0 , and in particular $f\left(\frac{1+i}{3}\right)=0$.
Fix $z \in \operatorname{Ball}_{1}(0)$. Denote be $w_{n}=\left(\frac{1+i}{3}\right)^{n} z$. Notice that $\left|\left(\frac{1+i}{3}\right)\right|<1$ thus $\lim _{n \rightarrow \infty} w_{n}=0$.
From continuity of $f, \lim _{n \rightarrow \infty} f\left(w_{n}\right)=f(0)$. On the other hand, we know that $f\left(w_{n}\right)=f\left(w_{0}\right)$ by induction. Thus $f(z)=f\left(w_{0}\right)=f\left(w_{n}\right.$ is a constant sequence whose limit is $f(0$, and thus $f(z)=f(0)=0$ and f is constant.

Question 4

First Solution

Define $g(z)=f(z)-\sin (z)$. If we will prove that all its derivatives at 0 are 0 , then it will show that the function is the constant 0 (because its expansion to a power series at 0 will be the same as the 0 function).

Note that $g(0)=f(0)-\sin (0)=0, g^{\prime}(0)=f^{\prime}(0)-\cos (0)=0 . g^{\prime \prime}(0)=f^{\prime \prime}(0)+\sin (0)$ and since $f^{\prime \prime}(0)+f(0)=0$ then $f^{\prime \prime}(0)=0$ and $g^{\prime \prime}(0)=0 . g^{\prime \prime \prime}(0)=f^{\prime \prime \prime}(0)+\cos (0)$ and by deriving the equation $f^{\prime \prime \prime}(0)+f^{\prime}(0)=0$ we get that $f^{\prime \prime \prime}(0)=-f^{\prime}(0)=-1$ then $g^{\prime \prime \prime}(0)=0$.

To generalize this to every derivative, we use induction on n the number of derivatives.

1. Base case: the cases for $n=0$ and $n=1$ were discussed above.
2. Assume that the hypothesis is true for n, we will prove that it is true for $n+2$. Indeed, note that by deriving the equation

$$
f^{\prime \prime}(z)+f(z)=0
$$

we get the equation

$$
f^{(n+2)}(z)+f^{(n)}(z)=0 .
$$

Indeed, we also know that $\sin ^{(n+2)}(z)+\sin ^{(n)}(z)=0$, thus

$$
g^{(n+2)}(0)=f^{(n+2)}(0)-\sin ^{(n+2)}(0)=-f^{(n)}(0)+\sin ^{(n)}(0)=-g^{(n)}(0)=0 .
$$

Second Solution

We know that $\sin (z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ in the ball, where

$$
a_{n}= \begin{cases}\frac{(-1)^{k}}{(2 k+1)!} & n=2 k+1 \\ 0 & n=2 k\end{cases}
$$

Denote $f(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$. We can write $f(z)$ like this since any analytic function that is defined in $\operatorname{ball}_{1}(0)$ can be written as a power series that converges in the ball.

Thus if we prove that for all $n=0,1,2, \ldots, a_{n}=b_{n}$, then $f(z)=\sin (z)$. We saw in class that we can derive the series one by one, thus

$$
f^{\prime \prime}(z)=\sum_{n=0}(n+2)(n+1) b_{n+2} z^{n}
$$

We know that $f^{\prime \prime}(z)+f(z)=0$, hence

$$
\sum_{n=0}(n+2)(n+1) b_{n+2} z^{n}+\sum_{n=0} b_{n} z^{n}=0 .
$$

Since if a function is 0 then all its coefficients in the power series are 0 then for all n we get that

$$
(n+2)(n+1) b_{n+2}+b_{n}=0
$$

Now we prove that

$$
b_{n}=a_{n}
$$

by induction on n :

1. Base Cases: When $n=0,1$ then $b_{0}=f(0)=0=a_{0}$ and $b_{1}=f^{\prime}(0)=1=a_{1}$ by our assumptions.
2. Assume that $a_{n}=b_{n}$ and prove that $a_{n+2}=b_{n+2}$: Indeed, we know that

$$
b_{n+2}+(n+2)(n+1) b_{n}=0
$$

or

$$
b_{n+2}=(-1) \frac{1}{(n+2)(n+1)} b_{n}=(-1) \frac{1}{(n+2)(n+1)} a_{n}
$$

where the last equality is by the induction hypothesis. If $n=2 k$ is even then $b_{n+2}=0=a_{n+2}$. If $n=2 k+1$ is odd then

$$
b_{n+2}=(-1) \frac{1}{(2 k+3)(2 k+1)} \frac{(-1)^{k}}{(2 k+1)!}=a_{n+2}
$$

and the claim follows.

Third Solution

We know that $f(z)+f^{\prime \prime}(z)=0$ in the ball. In particular, this is true in the real interval $(-1,1)$. From a theorem in ODE there is a unique solution to this equation where $f(0)=0, f^{\prime}(0)=1$ and this is $\sin (z)$. Thus $f(z)=\sin (z)$ in the real interval. This interval has a sequence with a cluster point (for example $z_{n}=\frac{1}{n}$ whose limit is 0). Since $f\left(\frac{1}{n}\right)=\sin \left(\frac{1}{n}\right)$, then by the uniqueness theorem, $f(z)=\sin (z)$ on the whole domain $\operatorname{Ball}_{1}(0)$.

Question 5

Yes - f must be analytic.
If f is the constant 0 then obviously f is analytic. So assume otherwise.
Notice that $f(z)=\frac{f(z)^{3}}{f(z)^{2}}$ is defined on all points where $f(z) \neq 0$ and is analytic there since both $f(z)^{3}, f(z)^{2}$ are analytic. $f(z)^{3}$ and $f(z)^{2}$ are not constant, then their zeros are isolated and have finite order. If we prove that for every $z_{0} \in \mathbb{C}$ so that $f\left(z_{0}\right)=0$ we have that $\operatorname{ord}_{z_{0}}\left(f^{2}\right)<\operatorname{ord}_{z_{0}}\left(f^{3}\right)$, then in particular $\frac{f(z)^{3}}{f(z)^{2}}$ is analytic on z_{0} (when it is defined to be 0), thus f is analytic.

Indeed, if $f\left(z_{0}\right)=0$ then $f(z)^{6}=f(z)^{3} \cdot f(z)^{3}=f(z)^{2} \cdot f(z)^{2} \cdot f(z)^{2}$, thus $0<\operatorname{ord}_{z_{0}}\left(f^{6}\right)=$ $2 \operatorname{ord}_{z_{0}}\left(f^{3}\right)=3 \operatorname{ord}_{z_{0}}\left(f^{2}\right)$, and thus $\operatorname{ord}_{z_{0}}\left(f^{2}\right)<\operatorname{ord}_{z_{0}}\left(f^{3}\right)$.

