
Answers to the Quiz

Question 1

Recall that log(1+z) =
∑∞
n=0 anz

n where a0 = 0, a1 = 1 and a2 = − 1
2 . Thus log(1+z3) =

∑∞
n=0 anz

3n,

Hence

log(1 + z3)− z3 = −1

2
z6 +

∑
n≥7

bnz
n,

for some coefficients bn (i.e. the first non-zero coefficient is for z6. In particular, log(1+z3)−z3 = z6g(z)

for some analytic g(z) so that g(0) 6= 0. Thus

f(z) =
z7

z6g(z)
= z

1

g(z)
.

So the order of 0 is 1

Question 2

It is easy to see that γ =
{
z ∈ C : |z| = 2, 0 ≤ arg(z) ≤ π

6

}
. We parametrize γ : [0, π/6]→ C, γ(t) = 2eit.

The formula for 4
√
z in the question maps 1 to −1, hence its formula is

4
√
Reiθ =

4
√
Rei(θ/4+π)

where 0 ≤ θ < π. The function z3 maps points with 0 ≤ arg(z) ≤ π
6 to points where 0 ≤ arg(z) ≤ π

2 . In

particular,
4
√
z3 = 4

√
z
3

on γ (note that this is not true in all the domain of the fourth root). Then∫
γ

dz
4
√
z3

= −
∫ π/6

0

2ieit

4
√

8ei3t/4+iπ
dt =

4
√

2i

∫ π/6

0

eit/4dt = 4
4
√

2eit/4|t=π/6t=0 = 4
4
√

2(eiπ/24 − 1).

The minus in the first equality is because we are told to integrate clockwise.

Second Solution

The inverse function derivative theorem states that f−1′(z) = 1
f ′(f−1(z)) .

In particular, for the function g(z) = 4
√
z which is an inverse for z4. The derivative at z is

g′(z) =
1

4( 4
√
z)3

.

( 4
√
z)3 = (

4
√
Reiθ)3 =

4
√
R3ei3θ/4+3π =

4
√
R3e3θ/4+π =

4
√
z3.

Note that in general we can’t just switch between taking a fourth root and doing a power of 3, and

the reason we can do it here, is because 0 ≤ θ ≤ π/6.

Thus ∫
γ

dz
4
√
z3

=

∫
γ

dz
4
√
z
3 = 4

∫
γ

dz

4 4
√
z
3 = 4

4
√

2(eiπ/24 − 1).

Where the second last inequality is due to the fundamental theorem of calculus for the complex

numbers.
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Question 3

There are many solutions to this question.

Using the fact that f is analytic

We expand f to a power series around 0, and note that from what we saw in class, the series converges

in the ball of radius 1. f(z) =
∑∞
n=0 anz

n.

On the one hand f( 1+i
3 z) =

∑∞
n=0 an

(
1+i
3

)n
zn. On the other hand, the coefficients of the series for

f are unique, thus for all n = 0, 1, 2, ... we have that

an =

(
1 + i

3

)n
an

or

(1−
(

1 + i

3

)n
)an = 0.

By the fact that f(0) = 0 we get that a0 = 0. Furthermore, since since
∣∣( 1+i

3

)n∣∣ < 1, then (1−
(
1+i
3

)n
) 6= 0

for all n ≥ 1. Thus for all n, an = 0, and f(z) is the zero function. In particular f( 1+i
3 ) = 0.

Another solution

We restrict f to the closed ball Ball1/2(0). By the maximum principle, the maximum of f in this

restricted domain is at ∂Ball1/2(0). Denote a point where f get’s a maximum by z0. However, since

f(z0) = f( 1+i
3 z0), then f get’s another maximum in the interior of the ball. Thus by the maximum

principle, f is a constant in this restricted domain. By the uniqueness theorem, f is a constant in all

Ball1(0). We know that f(0) = 0 thus f( 1+i
3 ) = 0.

Another solution

Assume towards contradiction that f is not the zero fucntion and let ord0(f) = p ≥ 1. Then f(z) =

zpg(z), for some analytic g so that g(0) 6= 0. Now compare f(z) = f((1 + i)z/3), to get:

(1 + i/3)pg(0) = g(0).

Thus we got g(0) = 0 a contradiction.

Another solution: Using continuity only

We prove that f is the constant 0, and in particular f( 1+i
3 ) = 0.

Fix z ∈ Ball1(0). Denote be wn =
(
1+i
3

)n
z. Notice that

∣∣( 1+i
3

)∣∣ < 1 thus limn→∞ wn = 0.

From continuity of f , limn→∞ f(wn) = f(0). On the other hand, we know that f(wn) = f(w0) by

induction. Thus f(z) = f(w0) = f(wn is a constant sequence whose limit is f(0, and thus f(z) = f(0) = 0

and f is constant.

Question 4

First Solution

Define g(z) = f(z) − sin(z). If we will prove that all its derivatives at 0 are 0, then it will show that

the function is the constant 0 (because its expansion to a power series at 0 will be the same as the 0

function).
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Note that g(0) = f(0) − sin(0) = 0, g′(0) = f ′(0) − cos(0) = 0. g′′(0) = f ′′(0) + sin(0) and since

f ′′(0) + f(0) = 0 then f ′′(0) = 0 and g′′(0) = 0. g′′′(0) = f ′′′(0) + cos(0) and by deriving the equation

f ′′′(0) + f ′(0) = 0 we get that f ′′′(0) = −f ′(0) = −1 then g′′′(0) = 0.

To generalize this to every derivative, we use induction on n the number of derivatives.

1. Base case: the cases for n = 0 and n = 1 were discussed above.

2. Assume that the hypothesis is true for n, we will prove that it is true for n+ 2. Indeed, note that

by deriving the equation

f ′′(z) + f(z) = 0

we get the equation

f (n+2)(z) + f (n)(z) = 0.

Indeed, we also know that sin(n+2)(z) + sin(n)(z) = 0, thus

g(n+2)(0) = f (n+2)(0)− sin(n+2)(0) = −f (n)(0) + sin(n)(0) = −g(n)(0) = 0.

Second Solution

We know that sin(z) =
∑∞
n=0 anz

n in the ball, where

an =


(−1)k
(2k+1)! n = 2k + 1,

0 n = 2k.

Denote f(z) =
∑∞
n=0 bnz

n. We can write f(z) like this since any analytic function that is defined in

ball1(0) can be written as a power series that converges in the ball.

Thus if we prove that for all n = 0, 1, 2, ..., an = bn, then f(z) = sin(z). We saw in class that we can

derive the series one by one, thus

f ′′(z) =
∑
n=0

(n+ 2)(n+ 1)bn+2z
n.

We know that f ′′(z) + f(z) = 0, hence∑
n=0

(n+ 2)(n+ 1)bn+2z
n +

∑
n=0

bnz
n = 0.

Since if a function is 0 then all its coefficients in the power series are 0 then for all n we get that

(n+ 2)(n+ 1)bn+2 + bn = 0.

Now we prove that

bn = an

by induction on n:

1. Base Cases: When n = 0, 1 then b0 = f(0) = 0 = a0 and b1 = f ′(0) = 1 = a1 by our assumptions.

2. Assume that an = bn and prove that an+2 = bn+2: Indeed, we know that

bn+2 + (n+ 2)(n+ 1)bn = 0,

or

bn+2 = (−1)
1

(n+ 2)(n+ 1)
bn = (−1)

1

(n+ 2)(n+ 1)
an,

where the last equality is by the induction hypothesis. If n = 2k is even then bn+2 = 0 = an+2. If

n = 2k + 1 is odd then

bn+2 = (−1)
1

(2k + 3)(2k + 1)

(−1)k

(2k + 1)!
= an+2,

and the claim follows.
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Third Solution

We know that f(z) + f ′′(z) = 0 in the ball. In particular, this is true in the real interval (−1, 1). From a

theorem in ODE there is a unique solution to this equation where f(0) = 0, f ′(0) = 1 and this is sin(z).

Thus f(z) = sin(z) in the real interval. This interval has a sequence with a cluster point (for example

zn = 1
n whose limit is 0). Since f( 1

n ) = sin( 1
n ), then by the uniqueness theorem, f(z) = sin(z) on the

whole domain Ball1(0).

Question 5

Yes - f must be analytic.

If f is the constant 0 then obviously f is analytic. So assume otherwise.

Notice that f(z) = f(z)3

f(z)2 is defined on all points where f(z) 6= 0 and is analytic there since both

f(z)3, f(z)2 are analytic. f(z)3 and f(z)2 are not constant, then their zeros are isolated and have finite

order. If we prove that for every z0 ∈ C so that f(z0) = 0 we have that ordz0(f2) < ordz0(f3), then in

particular f(z)3

f(z)2 is analytic on z0 (when it is defined to be 0), thus f is analytic.

Indeed, if f(z0) = 0 then f(z)6 = f(z)3 · f(z)3 = f(z)2 · f(z)2 · f(z)2, thus 0 < ordz0(f6) =

2ordz0(f3) = 3ordz0(f2), and thus ordz0(f2) < ordz0(f3).
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