Answers to the Quiz

Question 1

Recall that $log(1+z) = \sum_{n=0}^{\infty} a_n z^n$ where $a_0 = 0$, $a_1 = 1$ and $a_2 = -\frac{1}{2}$. Thus $log(1+z^3) = \sum_{n=0}^{\infty} a_n z^{3n}$, Hence

$$log(1+z^3) - z^3 = -\frac{1}{2}z^6 + \sum_{n \ge 7} b_n z^n,$$

for some coefficients b_n (i.e. the first non-zero coefficient is for z^6 . In particular, $log(1+z^3) - z^3 = z^6g(z)$ for some analytic g(z) so that $g(0) \neq 0$. Thus

$$f(z) = \frac{z^7}{z^6 g(z)} = z \frac{1}{g(z)}.$$

So the order of 0 is 1

Question 2

It is easy to see that $\gamma = \{z \in \mathbb{C} : |z| = 2, 0 \le \arg(z) \le \frac{\pi}{6}\}$. We parametrize $\gamma : [0, \pi/6] \to \mathbb{C}, \gamma(t) = 2e^{it}$. The formula for $\sqrt[4]{z}$ in the question maps 1 to -1, hence its formula is

$$\sqrt[4]{Re^{i\theta}} = \sqrt[4]{R}e^{i(\theta/4+\pi)}$$

where $0 \le \theta < \pi$. The function z^3 maps points with $0 \le \arg(z) \le \frac{\pi}{6}$ to points where $0 \le \arg(z) \le \frac{\pi}{2}$. In particular, $\sqrt[4]{z^3} = \sqrt[4]{z}^3$ on γ (note that this is *not* true in all the domain of the fourth root). Then

$$\int_{\gamma} \frac{dz}{\sqrt[4]{z^3}} = -\int_0^{\pi/6} \frac{2ie^{it}}{\sqrt[4]{8}e^{i3t/4 + i\pi}} dt = \sqrt[4]{2}i \int_0^{\pi/6} e^{it/4} dt = 4\sqrt[4]{2}e^{it/4}|_{t=0}^{t=\pi/6} = 4\sqrt[4]{2}(e^{i\pi/24} - 1).$$

The minus in the first equality is because we are told to integrate clockwise.

Second Solution

The inverse function derivative theorem states that $f^{-1\prime}(z) = \frac{1}{f'(f^{-1}(z))}$.

In particular, for the function $g(z) = \sqrt[4]{z}$ which is an inverse for z^4 . The derivative at z is

$$g'(z) = \frac{1}{4(\sqrt[4]{z})^3}.$$

$$(\sqrt[4]{z})^3 = (\sqrt[4]{Re^{i\theta}})^3 = \sqrt[4]{R^3}e^{i3\theta/4 + 3\pi} = \sqrt[4]{R^3}e^{3\theta/4 + \pi} = \sqrt[4]{z^3}e^{i3\theta/4 + \pi} = \sqrt[4]{z^3}e$$

Note that in general we can't just switch between taking a fourth root and doing a power of 3, and the reason we can do it here, is because $0 \le \theta \le \pi/6$.

Thus

$$\int_{\gamma} \frac{dz}{\sqrt[4]{z^3}} = \int_{\gamma} \frac{dz}{\sqrt[4]{z^3}} = 4 \int_{\gamma} \frac{dz}{4\sqrt[4]{z^3}} = 4\sqrt[4]{2}(e^{i\pi/24} - 1).$$

Where the second last inequality is due to the fundamental theorem of calculus for the complex numbers.

Question 3

There are many solutions to this question.

Using the fact that f is analytic

We expand f to a power series around 0, and note that from what we saw in class, the series converges in the ball of radius 1. $f(z) = \sum_{n=0}^{\infty} a_n z^n$.

On the one hand $f(\frac{1+i}{3}z) = \sum_{n=0}^{\infty} a_n \left(\frac{1+i}{3}\right)^n z^n$. On the other hand, the coefficients of the series for f are unique, thus for all n = 0, 1, 2, ... we have that

$$a_n = \left(\frac{1+i}{3}\right)^n a_n$$

or

$$\left(1 - \left(\frac{1+i}{3}\right)^n\right)a_n = 0.$$

By the fact that f(0) = 0 we get that $a_0 = 0$. Furthermore, since since $\left|\left(\frac{1+i}{3}\right)^n\right| < 1$, then $\left(1 - \left(\frac{1+i}{3}\right)^n\right) \neq 0$ for all $n \ge 1$. Thus for all $n, a_n = 0$, and f(z) is the zero function. In particular $f\left(\frac{1+i}{3}\right) = 0$.

Another solution

We restrict f to the *closed* ball $\overline{Ball_{1/2}(0)}$. By the maximum principle, the maximum of f in this restricted domain is at $\partial Ball_{1/2}(0)$. Denote a point where f get's a maximum by z_0 . However, since $f(z_0) = f(\frac{1+i}{3}z_0)$, then f get's another maximum in the interior of the ball. Thus by the maximum principle, f is a constant in this restricted domain. By the uniqueness theorem, f is a constant in all $Ball_1(0)$. We know that f(0) = 0 thus $f(\frac{1+i}{3}) = 0$.

Another solution

Assume towards contradiction that f is not the zero function and let $ord_0(f) = p \ge 1$. Then $f(z) = z^p g(z)$, for some analytic g so that $g(0) \ne 0$. Now compare f(z) = f((1+i)z/3), to get:

$$(1+i/3)^p g(0) = g(0)$$

Thus we got g(0) = 0 a contradiction.

Another solution: Using continuity only

We prove that f is the constant 0, and in particular $f(\frac{1+i}{3}) = 0$.

Fix $z \in Ball_1(0)$. Denote be $w_n = \left(\frac{1+i}{3}\right)^n z$. Notice that $\left| \left(\frac{1+i}{3}\right) \right| < 1$ thus $\lim_{n \to \infty} w_n = 0$.

From continuity of f, $\lim_{n\to\infty} f(w_n) = f(0)$. On the other hand, we know that $f(w_n) = f(w_0)$ by induction. Thus $f(z) = f(w_0) = f(w_n)$ is a constant sequence whose limit is f(0), and thus f(z) = f(0) = 0 and f is constant.

Question 4

First Solution

Define g(z) = f(z) - sin(z). If we will prove that all its derivatives at 0 are 0, then it will show that the function is the constant 0 (because its expansion to a power series at 0 will be the same as the 0 function).

Note that g(0) = f(0) - sin(0) = 0, g'(0) = f'(0) - cos(0) = 0. g''(0) = f''(0) + sin(0) and since f''(0) + f(0) = 0 then f''(0) = 0 and g''(0) = 0. g'''(0) = f'''(0) + cos(0) and by deriving the equation f'''(0) + f'(0) = 0 we get that f'''(0) = -f'(0) = -1 then g'''(0) = 0.

To generalize this to every derivative, we use induction on n the number of derivatives.

- 1. Base case: the cases for n = 0 and n = 1 were discussed above.
- 2. Assume that the hypothesis is true for n, we will prove that it is true for n + 2. Indeed, note that by deriving the equation

$$f''(z) + f(z) = 0$$

we get the equation

$$f^{(n+2)}(z) + f^{(n)}(z) = 0.$$

Indeed, we also know that $sin^{(n+2)}(z) + sin^{(n)}(z) = 0$, thus

$$g^{(n+2)}(0) = f^{(n+2)}(0) - \sin^{(n+2)}(0) = -f^{(n)}(0) + \sin^{(n)}(0) = -g^{(n)}(0) = 0.$$

Second Solution

We know that $sin(z) = \sum_{n=0}^{\infty} a_n z^n$ in the ball, where

$$a_n = \begin{cases} \frac{(-1)^k}{(2k+1)!} & n = 2k+1\\ 0 & n = 2k. \end{cases}$$

Denote $f(z) = \sum_{n=0}^{\infty} b_n z^n$. We can write f(z) like this since any analytic function that is defined in $ball_1(0)$ can be written as a power series that converges in the ball.

Thus if we prove that for all $n = 0, 1, 2, ..., a_n = b_n$, then f(z) = sin(z). We saw in class that we can derive the series one by one, thus

$$f''(z) = \sum_{n=0}^{\infty} (n+2)(n+1)b_{n+2}z^n$$

We know that f''(z) + f(z) = 0, hence

$$\sum_{n=0}^{\infty} (n+2)(n+1)b_{n+2}z^n + \sum_{n=0}^{\infty} b_n z^n = 0.$$

Since if a function is 0 then all its coefficients in the power series are 0 then for all n we get that

$$(n+2)(n+1)b_{n+2} + b_n = 0.$$

Now we prove that

$$b_n = a_n$$

by induction on n:

- 1. Base Cases: When n = 0, 1 then $b_0 = f(0) = 0 = a_0$ and $b_1 = f'(0) = 1 = a_1$ by our assumptions.
- 2. Assume that $a_n = b_n$ and prove that $a_{n+2} = b_{n+2}$: Indeed, we know that

$$b_{n+2} + (n+2)(n+1)b_n = 0,$$

or

$$b_{n+2} = (-1)\frac{1}{(n+2)(n+1)}b_n = (-1)\frac{1}{(n+2)(n+1)}a_n$$

where the last equality is by the induction hypothesis. If n = 2k is even then $b_{n+2} = 0 = a_{n+2}$. If n = 2k + 1 is odd then

$$b_{n+2} = (-1)\frac{1}{(2k+3)(2k+1)}\frac{(-1)^k}{(2k+1)!} = a_{n+2}$$

and the claim follows.

Third Solution

We know that f(z) + f''(z) = 0 in the ball. In particular, this is true in the real interval (-1, 1). From a theorem in ODE there is a unique solution to this equation where f(0) = 0, f'(0) = 1 and this is sin(z). Thus f(z) = sin(z) in the real interval. This interval has a sequence with a cluster point (for example $z_n = \frac{1}{n}$ whose limit is 0). Since $f(\frac{1}{n}) = sin(\frac{1}{n})$, then by the uniqueness theorem, f(z) = sin(z) on the whole domain $Ball_1(0)$.

Question 5

Yes - f must be analytic.

If f is the constant 0 then obviously f is analytic. So assume otherwise.

Notice that $f(z) = \frac{f(z)^3}{f(z)^2}$ is defined on all points where $f(z) \neq 0$ and is analytic there since both $f(z)^3, f(z)^2$ are analytic. $f(z)^3$ and $f(z)^2$ are not constant, then their zeros are isolated and have finite order. If we prove that for every $z_0 \in \mathbb{C}$ so that $f(z_0) = 0$ we have that $ord_{z_0}(f^2) < ord_{z_0}(f^3)$, then in particular $\frac{f(z)^3}{f(z)^2}$ is analytic on z_0 (when it is defined to be 0), thus f is analytic.

Indeed, if $f(z_0) = 0$ then $f(z)^6 = f(z)^3 \cdot f(z)^3 = f(z)^2 \cdot f(z)^2 \cdot f(z)^2$, thus $0 < ord_{z_0}(f^6) = 2ord_{z_0}(f^3) = 3ord_{z_0}(f^2)$, and thus $ord_{z_0}(f^2) < ord_{z_0}(f^3)$.