MOED A: SOLUTIONS

1. Question 1:

Rewrite the function as

$$
f(z)=\frac{5 z-1}{z^{2}-z-2}=\frac{5 z-1}{(z+1)(z-2)}=\frac{2}{z+1}+\frac{3}{z-2}=\frac{2}{w}+\frac{3}{w}\left(\frac{1}{1-\frac{3}{w}}\right)
$$

where $w=z+1$. Therefore, for $|w|>3$, we have

$$
f(z)=\frac{2}{w}+\frac{3}{w} \sum_{n=0}^{\infty} \frac{3^{n}}{w^{n}}=\frac{5}{z+1}+\sum_{n=2}^{\infty} \frac{3^{n}}{(z+1)^{n}}
$$

where the sum converges for every $|z+1|=|w|>3$ and diverges whenever $|z+1| \leq$ 3 ; In particular the series converges for $3<|z+1|<4$.

2. Question 2:

The function

$$
f(z)=\frac{e^{1 / z}}{\sin (1 / z)}
$$

is analytic in \mathbb{C} except for the singularity points $z=0$ and $z=1 / \pi k$ for every $k \in \mathbb{Z}$. For every $k \in \mathbb{Z}$ we have

$$
|1 / \pi k-1 / 2| \leq 1 / \pi+1 / 2<1
$$

so all the singularities of f lies inside $\operatorname{Ball}_{1}(1 / 2)$, therefore we have

$$
\int_{|z-1 / 2|=1} f(z) d z=-2 \pi i \operatorname{Res}_{z=\infty}(f)=-2 \pi i \operatorname{Res}_{z=0}\left(\frac{e^{z}}{z^{2} \sin z}\right)
$$

where $z=0$ is a pole of the function of order 3 , so using the Taylor series of $e^{z}, \sin z$:

$$
\begin{aligned}
\operatorname{Res}_{z=0}\left(\frac{e^{z}}{z^{2} \sin z}\right)= & \operatorname{Res}_{z=0}\left(\frac{e^{z}}{z^{3}\left(1-z^{2} / 6\right)}\right)=\operatorname{Res}_{z=0}\left(\frac{e^{z}}{z^{3}} \sum_{n=0}^{2}\left(z^{2} / 6\right)^{n}\right) \\
& =\operatorname{Res}_{z-0}\left(\frac{\left(1+z+z^{2} / 2\right)\left(1+z^{2} / 6\right)}{z^{3}}\right)=1 / 6+1 / 2=2 / 3
\end{aligned}
$$

so the integral is equal to $-4 \pi i / 3$.

3. Question 3:

Same as in the midterm.

4. Question 4:

- The function $f_{1}(z)=z e^{-i \pi / 4}$ maps $\{z=x+i y: x>y\}$ onto $\{z: \operatorname{Im}(z)<0\}$;
- We look for a Mobius function $f_{2}(z)=\frac{a z+b}{c z+d}$ which maps $\{z: \operatorname{Im}(z)<0\}$ onto $\operatorname{Ball}_{1}(0)$: say the function maps $z=0$ to -1 and also $z=\infty$ to 1 , thus $b / d=-1$ and $a / c=1$, thus $f_{2}(z)=\frac{a z+b}{a z-b}$. Let f maps $z=1$ to i, so $a+b=i(a-b)$ and fix $a=1$, then $b=i$. Therefore the Mobius function

$$
f_{2}(z)=\frac{z+i}{z-i}
$$

maps $\{z: \operatorname{Im}(z)=0\}$ onto $\{z:|z|=1\}$, while $f_{2}(-i)=0$, so $f_{2} \operatorname{maps}\{z: \operatorname{Im}(z)<$ $0\}$ onto $\operatorname{Ball}_{1}(0)$.

- The function $f_{3}(z)=2 z$ maps $\operatorname{Ball}_{1}(0)$ onto $\operatorname{Ball}_{2}(0)$.
- Therefore the function

$$
f(z):=f_{3}\left(f_{2}\left(f_{1}(z)\right)\right)=2\left(\frac{z e^{-i \pi / 4}+i}{z e^{-i \pi / 4}-i}\right)
$$

maps $\{z=x+i y: x>y\}$ onto $\operatorname{Ball}_{2}(0)$, while f is conformal mapping as f_{1}, f_{2} and f_{3} are conformal mappings.

5. Question 5:

Let $f(z)=2 / z^{6}-3 / z^{3}+1$ and $\mathcal{U}=\{z:|z|>1\}$. Since $z \mapsto \bar{z}$ is a bijective map from \mathcal{U} to $\mathcal{U},($ as $z \in \mathcal{U}$ iff $\bar{z} \in \mathcal{U})$,

$$
M=\sup _{z \in \mathcal{U}}|f(\bar{z})|=\sup _{z \in \mathcal{U}}|f(z)|
$$

Let $p(z):=2 z^{6}-3 z^{3}+1$. As $z \mapsto 1 / z$ is a bijective map from \mathcal{U} to $\operatorname{Ball}_{1}(0) \backslash\{0\}$, we have

$$
M=\sup _{z \in \mathcal{U}}|p(1 / z)|=\sup _{z \in \operatorname{Ball}_{1}(0) \backslash\{0\}}|p(z)| .
$$

The function $p(z)$ is analytic in \mathbb{C} and non-constant, therefore by the maximum principle we have

$$
M=\sup _{|z|<1}\left|2 z^{6}-3 z^{3}+1\right|=\max _{|z|=1}\left|2 z^{6}-3 z^{3}+1\right|
$$

It is easily seen that $|p(z)| \leq 2|z|^{6}+3|z|^{3}+1=6$ for every $|z|=1$, while $|p(-1)|=6$, therefore $M=6$.

6. Question 6:

- First solution: Assume that the statement does not hold. Suppose there exists $R>0$ such that for every $n_{0} \in \mathbb{N}$, there exists $n \geq n_{0}$ and $z_{n} \in \operatorname{Ball}_{R}(0)$ such that $p_{n}\left(z_{n}\right)=0$. Therefore, there exists $r>0$ and a sequences $n_{1}<n_{2}<\ldots \in \mathbb{N}$ and $z_{n_{k}} \in \operatorname{Ball}_{R}(0)$ such that $p_{n_{k}}\left(z_{n_{k}}\right)=0$, for all $k \geq 1$. Without loss of generality suppose that $z_{n_{k}}$ converges (the sequence is in $\operatorname{Ball}_{R}(0)$ hence it has a converges sub-sequence), say $z_{n_{k}} \rightarrow w$.

Let $\varepsilon>0$. We know that the sequence $\left\{p_{n}(z)\right\}$ converges uniformly to the function e^{z} in $\operatorname{Ball}_{R+1}(0)$, therefore there exists $N \in \mathbb{N}$ such that for every $n>N$ and for every $z \in \operatorname{Ball}_{R+1}(0)$ we have

$$
\left|p_{n}(z)-e^{z}\right|<\varepsilon / 2
$$

in particular there exists $K_{1} \in \mathbb{N}$ such that

$$
\left|e^{z_{n_{k}}}\right|=\left|p_{n_{k}}\left(z_{n_{k}}\right)-e^{z_{n_{k}}}\right|<\varepsilon / 2
$$

for every $k>K_{1}$. On the other hand, as the function e^{z} is continuous and $z_{n_{k}} \rightarrow w$, there exists $K_{2} \in \mathbb{N}$ such that

$$
\left|e^{z_{n_{k}}}-e^{w}\right|<\varepsilon / 2
$$

for every $k>K_{2}$. Thus

$$
\left|e^{w}\right| \leq\left|e^{w}-e^{z_{n_{k}}}\right|+\left|e^{z_{n_{k}}}\right|<\varepsilon
$$

for every $k>\max \left\{K_{1}, K_{2}\right\}$, which implies that $e^{w}=0$ and this is a contradiction.

- Second solution: Let $f(z)=e^{z}$. For every $R>0$, the function f does not vanish in $\overline{B a l l_{R}(0)}$ and being a continuous function on a compact set, there exists $\varepsilon>0$ such that $|f(z)|>\varepsilon$ for every $z \in \overline{\operatorname{Ball}_{R}(0)}$. As $p_{n}(z)$ converges uniformly to e^{z} in $\overline{B a l l_{R}(0)}$, there exists $n_{0} \in \mathbb{N}$ such that $\left|p_{n}(z)-e^{z}\right|<\varepsilon$ for every $n \geq n_{0}$ and $z \in \overline{\operatorname{Ball}_{R}(0)}$. Thus $\left|p_{n}(z)\right| \geq\left|\left|p_{n}(z)-e^{z}\right|-\left|e^{z}\right|\right|=\left|e^{z}\right|-\left|p_{n}(z)-e^{z}\right|>0$, which implies that $p_{n}(z) \neq 0$ for every $z \in \overline{\operatorname{Ball}_{R}(0)}$ and $n \geq n_{0}$.

