MOED B: SOLUTIONS

QUESTION 1

The only singularity of the function is at z = 0, however $0 \notin \mathcal{U}$, so the function is analytic in \mathcal{U} and then it follows from Cauchy's theorem that the integral is equal to 0.

QUESTION 2

Let us find a Moebius mapping φ which maps $\partial Ball_1(0)$ to a line and also \mathbb{R} to a line, with both lines going through 0!

As $-1, 1 \in \mathbb{R} \cap \partial Ball_1(0)$ we require that $\varphi(-1) = \infty$ and $\varphi(1) = 0$, so we have

$$\varphi(z) = \frac{az-a}{cz+c} = \frac{a}{c}\frac{z-1}{z+1}.$$

Next, let us fix $\varphi(i) = 1$, i.e., $\frac{a}{c} = .. = -i$, which implies that $\varphi(z) = i\frac{1-z}{z+1}$ and we know that φ maps $\partial Ball_1(0)$ to \mathbb{R} ; since $\varphi(0) = i$, we have

$$\varphi(Ball_1(0)) = \{ z : Im(z) > 0 \}.$$

Now—using the points -1, 1, 0— we also know that φ maps \mathbb{R} into $i\mathbb{R}$, but $\varphi(i) = 1$ so

$$\varphi(\{z: Im(z) > 0\}) = \{z: Re(z) > 0\}.$$

Therefore,

$$\varphi(\{z: Im(z) > 0, |z| < 1\}) = \{z: Re(z) > 0, Im(z) > 0\}.$$

QUESTION 3

Let
$$f(z) = 1/p(z)$$
, where $p(z) = 5z^9 - 3z^2 + 1$. For every $|z| = 1$:
 $|-3z^2 + 1| \le 3 + 1 = 4 < 5 = |5z^9|,$

thus by Rouche's theorem: the number of zeros of p(z) in $Ball_1(0)$ is equal to the number of zeros of $5z^9$ in $Ball_1(0)$ which is 9. On the other hand p(z) has 9 zeros in \mathbb{C} , therefore $p(z) \neq 0$ for every $|z| \geq 1$. We get that f has all of its singularity points in $Ball_1(0)$, so from the theorem of residues:

$$\int_{|z|=1} f(z)dz = -2\pi i Res_{z=\infty}(f) = 2\pi i Res_{z=0} \left(\frac{z^7}{5 - 3z^7 + z^9}\right) = 0$$

since the last function is analytic at z = 0.

MOED B: SOLUTIONS

QUESTION 4

From the assumption we get that $f(\mathbb{C}) \subseteq \mathcal{U}$, where

$$\mathcal{U} := \{ z = x + iy : y < e^x \}.$$

If f is non-constant, then (as $f \in \mathcal{O}(\mathbb{C})$) its image $f(\mathbb{C})$ is dense in \mathbb{C} and therefore \mathcal{U} is dense in \mathbb{C} ; this is clearly not true, as for example

$$f(\mathbb{C}) \cap Ball_1(-2+2i) = \emptyset.$$

Therefore f must be constant.

<u>Common mistake</u>: "The function $\frac{v(x,y)}{e^{u(x,y)}}$ is not entire and bounded, hence constant". This function can not be entire (at any sense), as it is real!

QUESTION 5

Let $p(z) = a_0 + \ldots + a_n z^n$ and define the polynomial $q(z) := a_n + \ldots + a_0 z^n$. Notice that for every $z \neq 0$ we can write $q(z) = z^n p(1/z)$. For every |z| = 1, we have $|q(z)| = |p(1/z)| \le M$, since |1/z| = 1. From the maximum principle we get that also for every $|z| \leq 1$: $|q(z)| \leq M$. In particular, for every $|z| \geq 1$, we have

$$|q(1/z)| \le M \Longrightarrow \left|\frac{p(z)}{z^n}\right| \le M \Longrightarrow |p(z)| \le M |z|^n.$$

Common mistake: "as $|p(z)| \leq M$ for |z| = 1, we have

$$|p(z)| = |\sum_{k=0}^{n} a_k z^k| \le \sum_{k=0}^{n} |a_k| |z|^n = \sum_{k=0}^{n} |a_k| \le M.$$

This is not true at all! "This is like saying: If x < 0, then x < 2 < 0."

QUESTION 6

Let Log(z) be the main branch ("Anaf Rashi") of logarithm in $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$. The given function $f(z) = \log(z)$ is then must be of the form

$$f(z) = Log(z) + 2\pi kz$$

for some $k \in \mathbb{Z}$. As $f(1) = 8\pi i$, we get that $8\pi i = 2\pi ki$ and thus k = 4, so

 $f(z) = Log(z) + 8\pi i, \quad \forall z \in \mathbb{C} \setminus \mathbb{R}_{\leq 0}.$

For every $z = re^{i\theta} \in \mathbb{C} \setminus \mathbb{R}_{\leq 0}$, here r > 0 and $-\pi < \theta < \pi$, we have

 $|f(z)| = |\ln(r) + i(\theta + 8\pi)| \ge |\theta + 8\pi| \ge 7\pi.$

On the other hand, for every $z \in Ball_1(2)$, |z-2| < 1 and hence

 $|z^{2} + 4| = |(z - 2)^{2} + 4z| \le 1 + 4|z - 2 + 2| \le 1 + 4(1 + 2) = 13 < 7\pi = |f(z)|,$

which means that $z^2 + 4 \neq f(z)$ for every $z \in Ball_1(2)$. The answer is 0 solutions. Another solution: Write $z = re^{i\theta} \in Ball_1(2)$, then $-\pi < \theta \le \pi$ and $r \le 1$. If $f(z) = z^2 + 4$, then $\ln(r) + i(\theta + 8\pi) = r^2 e^{2\theta i} + 4$, which implies that

 $\ln(r) - 4 = r^2 \cos(2\theta)$ and $\theta + 8\pi = r^2 \sin(2\theta)$.

Square these equations and add them up, so

$$(7\pi)^2 \le (\theta + 8\pi)^2 \le (\ln(r) - 4)^2 + (\theta + 8\pi)^2 = r^4 \le 1,$$

that is a contradiction. So there are no solutions in $Ball_1(2)$.

Common mistake: " $|\log(z)| \ge 8\pi$ for every $z \in Ball_1(2)$ ". This is not true.