Solutions to some questions of Moed.A, Geometric Calculus 1, 06.02.2020

Question 2.b. Take a path $[0,1] \xrightarrow{\gamma} C$, with $\gamma(0) = (0,1), \gamma(1) = (1,0)$. Denote the image of γ by C_{γ} .

Solution 1. Consider the set $S = \{d | C_{\gamma} \cap \{x + y = d\} \neq \emptyset\}$. (All the values of d for which the line intersects the curve.) Note: $S \ni \{1\}$.

As C_{γ} is compact, there exists $S \ni d_0 = sup(S)$. Assume $d_0 > 1$, let $(x_0, y_0) \in C_{\gamma} \cap \{x + y = d_0\}$. Then C is tangent to $\{x + y = d_0\}$ at (x_0, y_0) . (Indeed, grad(f) does not vanish on C, and if $grad_{(x_0, y_0)}f \not\sim (1, 1)$ then d_0 cannot be the supremum)

If $d_0 = 1$ then take $S \ni d_0 = inf(S)$.

If inf(S) = sup(S) = 1 then C_{γ} is a segment inside $\{x + y = 1\}$.

Solution 2. Project C_{γ} onto the line $\{y = x\}$. Note that the points (1,0), (0,1) are sent to the same point $(\frac{1}{2}, \frac{1}{2})$. If all the points are sent to this point then γ is the straight segment from (1,0) to (0,1). Otherwise, the image of C_{γ} (under this projection) has the minimum and maximum on the line $\{y = x\}$. (The image is a compact subset.) And at least one of these maximum/minimum comes from the tangency

to $\{x + y = d\}$.

Solution 3. Define the map $C \to S^1 \in \mathbb{R}^2$ by $C \ni x \to \frac{grad(f)}{||grad(f)||} \in S^1$. (This is well defined as f' does not vanish at any point.) This map is continuous, and sends $(1,0) \to (0,1), (0,1) \to (1,0)$. The image is path-connected, thus some point of C is sent to $\pm (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$.

Question 3.b.

- **Solution 1.** Fix some $\vec{v} \in \mathbb{R}^3$. We are looking for the min/max of the function $g(\underline{x}) = \underline{x} \cdot \underline{v}$ on S. The min/max of g on S exist, as g is continuous and S is compact. This is the min/max problem with the restriction $f(\underline{x}) = 0$. Therefore the conditional extrema of g satisfy: $grad(f) \sim grad(g) = \underline{v}$. Thus, if the min/max are different, we get at least two points of S where $grad(f)|\underline{v}$.
 - If the min/max coincide, then S lies inside the plane $\underline{x} \cdot \underline{v} = const$. But then at any point of S we have:
 - either $grad(f) \neq 0$ and thus S is locally a part of the plane, hence $grad(f)||\underline{v}|$ for infinity of points;
 - or grad(f) = 0 and thus trivially $grad(f)||\underline{v}|$ for at least two points.
- Solution 2. Rotate \mathbb{R}^3 to assume $\underline{v} = (0, 0, 1)$. Consider the function z on S. This is a continuous function on a compact set, thus it has the extrema. At each extremum holds:
 - either $grad(f) \neq 0$, and then grad(f)||(0,0,1);
 - or grad(f) = 0, thus grad(f)||(0, 0, 1).

If the min/max of z are realized at distinct points of S then we get the needed two points. If the min/max are realized at the same point then S sits inside the plane $z = z_0$. Then argue as above.

Question 4.b.

The condition $\frac{y}{2} \le z \le y$ implies $y \ge 0$, thus |y| = y. We pass to the iterated integral, and then to polar coordinates:

$$\int_{-1}^{1} \left(\iint_{\substack{0 \le y^2 + z^2 \le x^{\frac{2}{3}} \\ \frac{y}{2} \le z \le y}} y e^{x^2} dy dz \right) dx = \int_{-1}^{1} \left(\iint_{\substack{0 \le r \le |x|^{\frac{1}{3}} \\ arctan(\frac{1}{2}) \le \phi \le \frac{\pi}{4}}} r^2 cos(\phi) dr d\phi \right) e^{x^2} dx = \left(\frac{1}{\sqrt{2}} - sin(arctan(\frac{1}{2}))\right) \int_{-1}^{1} \frac{|x|}{3} e^{x^2} dx = \left(\frac{1}{\sqrt{2}} - sin(arctan(\frac{1}{2}))\right) \int_{-1}^{1} \frac{|x|}{3} e^{x^2} dx = \left(\frac{1}{\sqrt{2}} - sin(arctan(\frac{1}{2}))\right) \int_{0}^{1} x e^{x^2} dx = \frac{(\frac{1}{\sqrt{2}} - sin(arctan(\frac{1}{2})))}{3} \cdot (e^1 - 1).$$

One can also compute $sin(arctan(\frac{1}{2}))$, e.g., $sin^2 = \frac{sin^2}{sin^2 + cos^2} = \frac{tan^2}{tan^2 + 1}$, thus $sin(arctan(\frac{1}{2})) = \frac{1}{\sqrt{5}}$.