Solutions to some questions of Moed.A, Geometric Calculus 1, 06.02.2020
Question 2.b. Take a path $[0,1] \xrightarrow{\gamma} C$, with $\gamma(0)=(0,1), \gamma(1)=(1,0)$. Denote the image of γ by C_{γ}.
Solution 1. Consider the set $S=\left\{d \mid C_{\gamma} \cap\{x+y=d\} \neq \varnothing\right\}$. (All the values of d for which the line intersects the curve.) Note: $S \ni\{1\}$.

As C_{γ} is compact, there exists $S \ni d_{0}=\sup (S)$. Assume $d_{0}>1$, let $\left(x_{0}, y_{0}\right) \in C_{\gamma} \cap\left\{x+y=d_{0}\right\}$. Then C is tangent to $\left\{x+y=d_{0}\right\}$ at $\left(x_{0}, y_{0}\right)$. (Indeed, $\operatorname{grad}(f)$ does not vanish on C, and if $\operatorname{grad}_{\left(x_{0}, y_{0}\right)} f \nsim(1,1)$ then d_{0} cannot be the supremum)

If $d_{0}=1$ then take $S \ni d_{0}=\inf (S)$.
If $\inf (S)=\sup (S)=1$ then C_{γ} is a segment inside $\{x+y=1\}$.
Solution 2. Project C_{γ} onto the line $\{y=x\}$. Note that the points $(1,0),(0,1)$ are sent to the same point $\left(\frac{1}{2}, \frac{1}{2}\right)$. If all the points are sent to this point then γ is the straight segment from $(1,0)$ to $(0,1)$.

Otherwise, the image of C_{γ} (under this projection) has the minimum and maximum on the line $\{y=x\}$. (The image is a compact subset.) And at least one of these maximum/minimum comes from the tangency to $\{x+y=d\}$.
Solution 3. Define the map $C \rightarrow S^{1} \in \mathbb{R}^{2}$ by $C \ni x \rightarrow \frac{\operatorname{grad}(f)}{\|\operatorname{grad}(f)\|} \in S^{1}$. (This is well defined as f^{\prime} does not vanish at any point.) This map is continuous, and sends $(1,0) \rightarrow(0,1),(0,1) \rightarrow(1,0)$. The image is path-connected, thus some point of C is sent to $\pm\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

Question 3.b.

Solution 1. Fix some $\vec{v} \in \mathbb{R}^{3}$. We are looking for the min/max of the function $g(\underline{x})=\underline{x} \cdot \underline{v}$ on S. The min/max of g on S exist, as g is continuous and S is compact. This is the min/max problem with the restriction $f(\underline{x})=0$. Therefore the conditional extrema of g satisfy: $\operatorname{grad}(f) \sim \operatorname{grad}(g)=\underline{v}$. Thus, if the min/max are different, we get at least two points of S where $\operatorname{grad}(f) \| \underline{v}$.

If the min/max coincide, then S lies inside the plane $\underline{x} \cdot \underline{v}=$ const. But then at any point of S we have:

- either $\operatorname{grad}(f) \neq 0$ and thus S is locally a part of the plane, hence $\operatorname{grad}(f) \| \underline{v}$ for infinity of points;
- or $\operatorname{grad}(f)=0$ and thus trivially $\operatorname{grad}(f) \| \underline{v}$ for at least two points.

Solution 2. Rotate \mathbb{R}^{3} to assume $\underline{v}=(0,0,1)$. Consider the function z on S. This is a continuous function on a compact set, thus it has the extrema. At each extremum holds:

- either $\operatorname{grad}(f) \neq 0$, and then $\operatorname{grad}(f) \|(0,0,1)$;
- or $\operatorname{grad}(f)=0$, thus $\operatorname{grad}(f) \|(0,0,1)$.

If the $\mathrm{min} / \mathrm{max}$ of z are realized at distinct points of S then we get the needed two points. If the min $/ \mathrm{max}$ are realized at the same point then S sits inside the plane $z=z_{0}$. Then argue as above.

Question 4.b.

The condition $\frac{y}{2} \leq z \leq y$ implies $y \geq 0$, thus $|y|=y$. We pass to the iterated integral, and then to polar coordinates:

$$
\begin{gathered}
\int_{-1}^{1}\left(\iint_{\substack{ \\
0 \leq y^{2}+z^{2} \leq x^{\frac{2}{3}} \\
\frac{y}{2} \leq z \leq y}} y e^{x^{2}} d y d z\right) d x=\int_{-1}^{1}\left(\iint_{\substack{0 \leq r \leq|x|^{\frac{1}{3}} \\
\arctan \left(\frac{1}{2}\right) \leq \phi \leq \frac{\pi}{4}}} r^{2} \cos (\phi) d r d \phi\right) e^{x^{2}} d x=\left(\frac{1}{\sqrt{2}}-\sin \left(\arctan \left(\frac{1}{2}\right)\right) \int_{-1}^{1} \frac{|x|}{3} e^{x^{2}} d x=\right. \\
=2 \frac{\left(\frac{1}{\sqrt{2}}-\sin \left(\arctan \left(\frac{1}{2}\right)\right)\right.}{3} \int_{0}^{1} x e^{x^{2}} d x=\frac{\left(\frac{1}{\sqrt{2}}-\sin \left(\arctan \left(\frac{1}{2}\right)\right)\right.}{3} \cdot\left(e^{1}-1\right) .
\end{gathered}
$$

One can also compute $\sin \left(\arctan \left(\frac{1}{2}\right)\right)$, e.g., $\sin ^{2}=\frac{\sin ^{2}}{\sin ^{2}+\cos ^{2}}=\frac{\tan ^{2}}{\tan ^{2}+1}$, thus $\sin \left(\arctan \left(\frac{1}{2}\right)\right)=\frac{1}{\sqrt{5}}$.

