## Question 2.b.

(1) (A remark) As $A$ is symmetric, it can be diagonalized by an orthogonal transformation, $A \rightarrow U A U^{t}, U U^{t}=\mathbb{I}$. This transformation preserves the sphere $S^{n-1}$ and the eigenvalues of $A$. Thus we can assume $f(x)=\sum \lambda_{i} x_{i}^{2}$, here $\left\{\lambda_{i}\right\}$ are the eigenvalues of $A$. Thus the absolute min/max value of $f$ on $S^{n-1}$ coincides with the smallest/largest eigenvalue of $A$, and is achieved at the corresponding eigenvector.
(2) (The general solution) The critical points of $f$ under the constraint $g(x):=\sum x_{i}^{2}-1=0$ satisfy: $\operatorname{grad}(f) \sim$ $\operatorname{grad}(g)$.

By the direct check, $\left.\operatorname{grad}(f)\right|_{x}=2 A \cdot x$ and $\left.\operatorname{grad}(g)\right|_{x}=2 x$. Thus any critical point satisfies: $A \cdot x \sim x$, $x \neq 0$, i.e. is an eigenvector of $A$. Let $\left\{\vec{v}_{i}\right\}$ be the eigenvectors, with their eigenvalues $\left\{\lambda_{i}\right\}$. We can choose them ortho-normalized. Then $f\left(\vec{v}_{i}\right)=\lambda_{i}$. Thus the absolute minimum of $f$ is $\min \left\{\lambda_{i}\right\}$, the absolute maximum of $f$ is $\max \left\{\lambda_{i}\right\}$.

To classify the other critical points suppose $\lambda_{i}<\lambda_{j}$. Restrict the function to the subset

$$
\mathbb{R}^{2} \supset \operatorname{Span}_{\mathbb{R}}\left(\vec{v}_{i}, \vec{v}_{j}\right) \cap S^{n-1}=S^{1}
$$

We get $f\left(t_{i}, t_{j}\right)=\lambda_{i} t_{i}^{2}+\lambda_{j} t_{j}^{2}$, where $t_{i}^{2}+t_{j}^{2}=1$. This has a local minimum at $t_{j}=0$ and a local maximum at $t_{i}=0$.

Thus, if $\lambda_{i}<\lambda_{j}<\lambda_{k}$ then the critical point $\vec{v}_{j}$ is a saddle point. (It is a local minimum when restricted to one smooth curve and a local maximum for the other.)

## Question 3.b.

Solution 1. Suppose $\operatorname{dim}(V)=3$, then the matrix $\left[\left.f^{\prime}\right|_{x_{0}},\left.g_{1}^{\prime}\right|_{x_{0}},\left.g_{2}^{\prime}\right|_{x_{0}}\right]$ is non-degenerate. Consider the map $\mathbb{R}^{n} \xrightarrow{f, g_{1}, g_{2}} \mathbb{R}^{3}$. By the open mapping theorem its image is locally open at the point $\left(f\left(x_{0}\right), g_{1}\left(x_{0}\right), g_{2}\left(x_{0}\right)\right)$. But then in any neighborhood of $x_{0}$ there are points $p, q$ such that

$$
g_{1}(p)=g_{1}\left(x_{0}\right), \quad g_{2}(p)=g_{2}\left(x_{0}\right), \quad f(p)>f\left(x_{0}\right), \quad \text { and } g_{1}(q)=g_{1}\left(x_{0}\right), \quad g_{2}(q)=g_{2}\left(x_{0}\right), \quad f(q)<f\left(x_{0}\right)
$$

Thus $x_{0}$ cannot be a local minimum of $f$ on $\partial \mathcal{U}$.
Solution 2. Suppose $\operatorname{dim}(V)=3$, then the matrix $\left[\left.g_{1}^{\prime}\right|_{x_{0}},\left.g_{2}^{\prime}\right|_{x_{0}},\left.f^{\prime}\right|_{x_{0}}\right]$ is non-degenerate. Then, by a local coordinate change, the map $\mathbb{R}^{n} \xrightarrow{g_{1}, g_{2}, f} \mathbb{R}^{3}$ can be brought to the form $\left(x_{1}, x_{2}, x_{3}\right)$. But then $x_{0}$ cannot be a local minimum of $f$ on $\partial \mathcal{U}$.
Solution 3. Suppose $x_{0}$ is a local minimum of $f$ on $\partial \mathcal{U}$. Thus $x_{0}$ is a local minimum under one of the constraints: $\left\{g_{1}=\right.$ $0\}$ or $\left\{g_{2}=0\right\}$ or $\left\{g_{1}=0=g_{2}\right\}$. In either case, Lagrange's theorem gives: the vectors $\left.f^{\prime}\right|_{x_{0}},\left.g_{1}^{\prime}\right|_{x_{0}},\left.g_{2}^{\prime}\right|_{x_{0}}$ are linearly dependent. Thus dim $\operatorname{Span}\left(\left.f^{\prime}\right|_{x_{0}},\left.g_{1}^{\prime}\right|_{x_{0}},\left.g_{2}^{\prime}\right|_{x_{0}}\right) \leq 2$.

Question 4.a. The function $M a t_{n \times n}(\mathbb{R}) \xrightarrow{\text { det }} \mathbb{R}$ is infinitely differentiable, being a polynomial. Thus its derivative can be computed in one of the (equivalent) ways.
Solution 1. Fix the (natural) basis of $\operatorname{Mat}_{n \times n}(\mathbb{R})$ corresponding to the standard basis of $\mathbb{R}^{n^{2}}$. We compute the partial derivatives of $\operatorname{det}(\ldots)$. To compute $\frac{\partial \operatorname{det}(\ldots)}{\partial a_{i j}}$ one expands $\operatorname{det}(\ldots)$ according to $i^{\prime}$ 'th row or $j$ 'th column. Then one gets: $\frac{\partial \operatorname{det}(\ldots)}{\partial a_{i j}}=\left(A^{\vee}\right)_{j i}$. Thus $\left.\operatorname{det}()^{\prime}\right|_{A}(\Delta)=\sum_{i j}\left(A^{\vee}\right)_{i j} \Delta_{i j}=\operatorname{trace}\left(A^{\vee} \cdot \Delta\right)$.
Solution 2. The linear map $\left.\operatorname{det}()^{\prime}\right|_{A} \in \operatorname{Hom}\left(\operatorname{Mat}_{n \times n}(\mathbb{R}), \mathbb{R}\right)$ is determined by its action on some basis of the vector space $M a t_{n \times n}(\mathbb{R})$. Take the basis of elementary matrices, $E_{i j}$. Then

$$
\left.\operatorname{det}()^{\prime}\right|_{A}\left(E_{i j}\right)=\lim \frac{\operatorname{det}\left(A+t E_{i j}\right)-\operatorname{det}(A)}{t}
$$

And again expand $\operatorname{det}\left(A+t E_{i j}\right)$ according to $i$ 'th row or $j$ 'th column, to get: $\left.\operatorname{det}()^{\prime}\right|_{A}\left(E_{i j}\right)=\left(A^{\vee}\right)_{j i}$.

