Geometric Calculus 1, 201.1.1031

Homework 1. (Not for submission)

Fall 2019 (D.Kerner)

- 1 (1) (a) Take several points, $(x_1, y_1), \ldots, (x_k, y_k)$ in \mathbb{R}^2 . Prove: they all lie on one line iff the matrix $\begin{cases} x_1 & \ldots \\ y_1 & \ldots \end{cases}$ x_k is of rank < 3.
 - (b) Extend this to: "the points $\underline{x}^{(1)}, \ldots, \underline{x}^{(k)}$ in \mathbb{R}^n lie on one hyperplane iff ... "
- (2) Draw/describe the sections of the following surfaces (in \mathbb{R}^3) by the planes $\{x = x_0\}, \{y = y_0\}, \{z = z_0\}$. Use this to draw/imagine the surfaces.
 - (a) i. $\{z = \frac{x^2}{a^2} + \frac{y^2}{b^2}\}$, called "elliptic paraboloid". ii. $\{z = \frac{x^2}{a^2} \frac{y^2}{b^2}\}$, called "hyperbolic paraboloid" (saddle). iii. $\{z = xy\}$ iv. $\{z^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2}\}$, called "elliptic cone". v. $\{\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2} + 1\}$, called "two-sheeted hyperboloid". vi. $\{\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2} 1\}$, called "one-sheeted hyperboloid". (b) i. $\{z = sin(x)\}$ ii. $\{z = sin(x^2 + y^2)\}$ iii. $\{sin(x^2 + y^2 + z^2) = 1\}$.

(3) Draw/describe the following subsets of \mathbb{R}^3 : i. $\left\{1 - x^2 - y^2 \ge z \ge x^2 + y^2 - 1\right\}$ ii. $\left\{0 \le z \le \frac{1}{xy}, |x| + |y| \le 1\right\}$ iii. $\left\{x^2 + y^2 + z^2 \le 1, (x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 \le 1\right\}$ iv. $\left\{\sqrt{x^2 + y^2} \le z \le \sqrt{1 - x^2 - y^2}\right\}$ v. $\left\{z^2 \le x^2 + y^2 + 1, x^2 + y^2 \le 1\right\}$.

- (4) A level curve of a function $\mathbb{R}^2 \supseteq \mathscr{D}_f \xrightarrow{f} \mathbb{R}$ is the subset $\{f(x,y) = c\} \subset \mathbb{R}^2$, for some $c \in \mathbb{R}$.
 - (a) Check that different level curves never intersect and that they cover the whole \mathscr{D}_f .
 - (b) Draw all the level curves for the graphs of the following functions. Using them try to draw/describe the graphs Draw all the level curves for the graphs of the following removing removing $f(x,y) = \frac{xy}{x^2+y^2}$ of the functions. i. $f(x,y) = \frac{1}{x^2+2y^2}$ ii. $f(x,y) = \frac{x}{y}$ iii. $f(x,y) = \frac{xy}{x^2+y^2}$ (At some points the level curves become very dense. Can you interpret this in terms of $\lim_{(x,y)\to\cdots} (\cdots)$?)

iv. f(x,y) = |x| + |y| - |x+y| v. $f(x,y) = \frac{y^2 + x^2 - 1}{x^2 + 4}$.

- (5) (a) Compute the length of the longest diagonal in the box $[0,1]^n \subset \mathbb{R}^n$, i.e. the length of the edge from $(0,\ldots,0)$ to $(1, \ldots, 1)$. (Note: the distances in a perfectly bounded body cannot be bounded uniformly in n.)
 - (b) Denote by r_n the radius of the largest closed ball that lies inside $[0,1]^n$. Denote by R_n the radius of the smallest closed ball that contains $[0,1]^n$. Compute $\lim_{n\to\infty} \frac{R_n}{r_n}$.
- (6) (a) Take a function $\mathbb{R}^n \xrightarrow{f} \mathbb{R}^m$. Check: the image of the map $\mathbb{R}^n \ni \underline{x} \to (\underline{x}, f(\underline{x})) \in \mathbb{R}^m$ is the graph of f.
 - (b) Let $\mathbb{R}^n \xrightarrow{f} \mathbb{R}^m$ be a linear map, i.e. $f(\underline{x} + y) = f(\underline{x}) + f(y)$, and $f(\lambda \cdot \underline{x}) = \lambda \cdot f(\underline{x})$, for any $\lambda \in \mathbb{R}, \underline{x}, y \in \mathbb{R}^n$. (i) Prove: there exists (and unique) a matrix, $A \in Mat_{n \times n}(\mathbb{R})$, such that $f(\underline{x}) = A \cdot \underline{x}$, for any $\underline{x} \in \mathbb{R}^n$. (ii) Prove: $|f(\underline{x})| \leq |A| \cdot |\underline{x}|$, for any $\underline{x} \in \mathbb{R}^n$. (The norm |A| is as in homework 0.)
- (7) (a) Find the interior, the closure and the boundary of the following sets. Check whether the sets are open/closed. i. $\{y^2 = z^2 + x^2 - 1\} \subset \mathbb{R}^3$ ii. $\prod(a_i, b_i] \subset \mathbb{R}^n$ iii. $Ball_r(\underline{a}) \subset \mathbb{R}^n$ iv. $\overline{Ball_r(\underline{a})} \subset \mathbb{R}^n$ v. $\mathbb{Q}^n \subset \mathbb{R}^n$ vi. $S^{n-1} := \{\underline{x} \mid ||\underline{x}|| = 1\} \subset \mathbb{R}^n$ vii. $\bigcup_{n,m \in \mathbb{N}} \overline{Ball_{\frac{1}{2m+n}}(\frac{1}{m}, \frac{1}{n})} \subset \mathbb{R}^2$ (b) Denote by π_x, π_y the projections of \mathbb{R}^2 onto the coordinate axes. Construct a subset $S \subset \mathbb{R}^2$ such that the
 - restrictions $\pi_x|_S$, $\pi_y|_S$ are injective, and $\partial(S) = \mathbb{R}^2$.
- (8) (Dis)Prove the following statements. If a statement happens to be false, can you correct it?
 - (a) $S \subset \mathbb{R}^n$ is open iff $\mathbb{R}^n \setminus S$ is closed.
 - (b) If $S_1 \subset \mathbb{R}^n$, $S_2 \subset \mathbb{R}^m$ are open/closed then so is $S_1 \times S_2 \subset \mathbb{R}^n \times \mathbb{R}^m$.
 - (c) Any union of open/closed subsets of \mathbb{R}^n is open/closed.
 - (d) Any intersection of open/closed subsets of \mathbb{R}^n is open/closed.
 - (e) $\emptyset \neq S \subset \mathbb{R}^n$ is open iff $S \cap \partial(S) = \emptyset$ iff $int(\partial(S)) = \emptyset$.
 - (f) An open/closed subset of \mathbb{R}^n is at most a countable union of open/closed balls.
 - (g) For any subset $S \subset \mathbb{R}^n$ holds: i. $S \subseteq int(\overline{S})$ ii. $S \supseteq int(\overline{S})$ iii. $\partial \overline{S} = \partial S$ iv. $\partial(int(S)) = \partial S$.