Geometric Calculus 1, 201.1.1031
 Homework 1. (Not for submission)
 Fall 2019 (D.Kerner)

(1) (a) Take several points, $\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)$ in \mathbb{R}^{2}. Prove: they all lie on one line iff the matrix $\left[\begin{array}{ccc}1 & \ldots & 1 \\ x_{1} & \ldots & x_{k} \\ y_{1} & \ldots & y_{k}\end{array}\right]$ is of rank<3.
(b) Extend this to: "the points $\underline{x}^{(1)}, \ldots, \underline{x}^{(k)}$ in \mathbb{R}^{n} lie on one hyperplane iff \ldots "
(2) Draw/describe the sections of the following surfaces (in \mathbb{R}^{3}) by the planes $\left\{x=x_{0}\right\},\left\{y=y_{0}\right\},\left\{z=z_{0}\right\}$. Use this to draw/imagine the surfaces.
(a) i. $\left\{z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right\}$, called "elliptic paraboloid". ii. $\left\{z=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right\}$, called "hyperbolic paraboloid" (saddle). iii. $\{z=x y\} \quad$ iv. $\left\{z^{2}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right\}$, called "elliptic cone". v. $\left\{\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+1\right\}$, called "two-sheeted hyperboloid". vi. $\left\{\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1\right\}$, called "one-sheeted hyperboloid".
(b) i. $\{z=\sin (x)\}$
ii. $\left\{z=\sin \left(x^{2}+y^{2}\right)\right\}$
iii. $\left\{\sin \left(x^{2}+y^{2}+z^{2}\right)=1\right\}$.
(3) Draw/describe the following subsets of \mathbb{R}^{3} : i. $\left\{1-x^{2}-y^{2} \geq z \geq x^{2}+y^{2}-1\right\} \quad$ ii. $\left\{0 \leq z \leq \frac{1}{x y},|x|+|y| \leq 1\right\}$ iii. $\left\{x^{2}+y^{2}+z^{2} \leq 1,\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2} \leq 1\right\} \quad$ iv. $\left\{\sqrt{x^{2}+y^{2}} \leq z \leq \sqrt{1-x^{2}-y^{2}}\right\}$ v. $\left\{z^{2} \leq x^{2}+y^{2}+1, x^{2}+y^{2} \leq 1\right\}$.
(4) A level curve of a function $\mathbb{R}^{2} \supseteq \mathscr{D}_{f} \xrightarrow{f} \mathbb{R}$ is the subset $\{f(x, y)=c\} \subset \mathbb{R}^{2}$, for some $c \in \mathbb{R}$.
(a) Check that different level curves never intersect and that they cover the whole \mathscr{D}_{f}.
(b) Draw all the level curves for the graphs of the following functions. Using them try to draw/describe the graphs
of the functions.
i. $f(x, y)=\frac{1}{x^{2}+2 y^{2}}$
ii. $f(x, y)=\frac{x}{y}$
iii. $f(x, y)=\frac{x y}{x^{2}+y^{2}}$
(At some points the level curves become very dense. Can you interpret this in terms of $\lim _{(x, y) \rightarrow \ldots}(\cdots)$?)

$$
\text { iv. } f(x, y)=|x|+|y|-|x+y| \quad \text { v. } \quad f(x, y)=\frac{y^{2}+x^{2}-1}{x^{2}+4}
$$

(5) (a) Compute the length of the longest diagonal in the box $[0,1]^{n} \subset \mathbb{R}^{n}$, i.e. the length of the edge from $(0, \ldots, 0)$ to $(1, \ldots, 1)$. (Note: the distances in a perfectly bounded body cannot be bounded uniformly in n.)
(b) Denote by r_{n} the radius of the largest closed ball that lies inside $[0,1]^{n}$. Denote by R_{n} the radius of the smallest closed ball that contains $[0,1]^{n}$. Compute $\lim _{n \rightarrow \infty} \frac{R_{n}}{r_{n}}$.
(6) (a) Take a function $\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{m}$. Check: the image of the map $\mathbb{R}^{n} \ni \underline{x} \rightarrow(\underline{x}, \underline{f}(\underline{x})) \in \mathbb{R}^{m}$ is the graph of \underline{f}.
(b) Let $\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{m}$ be a linear map, i.e. $f(\underline{x}+\underline{y})=f(\underline{x})+f(\underline{y})$, and $f(\lambda \cdot \underline{x})=\lambda \cdot f(\underline{x})$, for any $\lambda \in \mathbb{R}, \underline{x}, \underline{y} \in \mathbb{R}^{n}$.
(i) Prove: there exists (and unique) a matrix, $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$, such that $f(\underline{x})=A \cdot \underline{x}$, for any $\underline{x} \in \mathbb{R}^{n}$.
(ii) Prove: $|f(\underline{x})| \leq|A| \cdot|\underline{x}|$, for any $\underline{x} \in \mathbb{R}^{n}$. (The norm $|A|$ is as in homework 0 .)
(7) (a) Find the interior, the closure and the boundary of the following sets. Check whether the sets are open/closed.
i. $\left\{y^{2}=z^{2}+x^{2}-1\right\} \subset \mathbb{R}^{3}$
ii. $\prod\left(a_{i}, b_{i}\right] \subset \mathbb{R}^{n}$
iii. $\operatorname{Ball}_{r}(\underline{a}) \subset \mathbb{R}^{n} \quad$ iv. $\overline{\operatorname{Ball}_{r}(\underline{a})} \subset \mathbb{R}^{n}$
v. $\mathbb{Q}^{n} \subset \mathbb{R}^{n}$
vi. $\quad S^{n-1}:=\{\underline{x} \mid\|\underline{x}\|=1\} \subset \mathbb{R}^{n}$
vii. $\cup_{n, m \in \mathbb{N}} \overline{\text { Ball } \frac{1}{2^{m+n}}}\left(\frac{1}{m}, \frac{1}{n}\right) \subset \mathbb{R}^{2}$
(b) Denote by π_{x}, π_{y} the projections of \mathbb{R}^{2} onto the coordinate axes. Construct a subset $S \subset \mathbb{R}^{2}$ such that the restrictions $\left.\pi_{x}\right|_{S},\left.\pi_{y}\right|_{S}$ are injective, and $\partial(S)=\mathbb{R}^{2}$.
(8) (Dis)Prove the following statements. If a statement happens to be false, can you correct it?
(a) $S \subset \mathbb{R}^{n}$ is open iff $\mathbb{R}^{n} \backslash S$ is closed.
(b) If $S_{1} \subset \mathbb{R}^{n}, S_{2} \subset \mathbb{R}^{m}$ are open/closed then so is $S_{1} \times S_{2} \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$.
(c) Any union of open/closed subsets of \mathbb{R}^{n} is open/closed.
(d) Any intersection of open/closed subsets of \mathbb{R}^{n} is open/closed.
(e) $\varnothing \neq S \subset \mathbb{R}^{n}$ is open iff $S \cap \partial(S)=\varnothing \operatorname{iff} \operatorname{int}(\partial(S))=\varnothing$.
(f) An open/closed subset of \mathbb{R}^{n} is at most a countable union of open/closed balls.
(g) For any subset $S \subset \mathbb{R}^{n}$ holds: i. $S \subseteq \overline{\operatorname{int}(S)}$
ii. $S \supseteq \operatorname{int}(\bar{S})$
iii. $\partial \bar{S}=\partial S$
iv. $\partial(\operatorname{int}(S))=\partial S$.

