## Geometric Calculus 1, 201.1.1031

## Homework 10

Fall 2019 (D.Kerner)

- (1) (a) Verify that  $||L||_{op} := \sup_{v \neq 0} \frac{||L(v)||}{||v||}$  defines a norm on  $Hom(\mathbb{R}^n, \mathbb{R}^m)$ . Verify:  $||L_1 \circ L_2||_{op} \le ||L_1||_{op} \cdot ||L_2||_{op}$ .
  - (b) Take the presentation matrix [L] for the standard bases of  $\mathbb{R}^n$ ,  $\mathbb{R}^m$ . Find the min/max of  $f(\underline{x}) = ||[L] \cdot \underline{x}||$  on  $S^{n-1}$ . Express  $||L||_{op}$  via the eigenvalues of  $[L]^t \cdot [L]$ .
  - (c) We have defined the differentiability/ $C^k$  of functions  $\mathbb{R}^n \supseteq \mathscr{D}_f \xrightarrow{f} \mathbb{R}^m$  for the Euclidean norms on  $\mathbb{R}^n, \mathbb{R}^m$ . Prove: f is differentiable/ $C^k$  for some norms  $||*||_{\mathbb{R}^n}, ||*||_{\mathbb{R}^m}$  iff it is differentiable/ $C^k$ for any other norms  $||*||_{\mathbb{R}^n}$ ,  $||*||_{\mathbb{R}^m}$ .
  - (d) According to these norms one has  $||f'|_p||_{op}$  and  $||f'|_p||_{op}$ . Prove: there exist  $0 < c < C < \infty$ such that (for any  $p \in \mathscr{D}_f$ ):  $c \cdot ||f'|_p||_{op} \leq ||f'|_p||_{op} \leq C \cdot ||f'|_p||_{op}$ .
- (2) (a) Let  $\mathbb{R}^n \supseteq \mathscr{D}_f \xrightarrow{f} \mathbb{R}^m$  be  $C^1$ . Prove: for any compact subset  $K \subset \mathscr{D}_f$  exists c > 0 such that  $||f(\underline{y}) f(\underline{x})|| \le c \cdot ||\underline{x} \underline{y}||$  for any  $\underline{x}, \underline{y} \in K$ . Can  $C^1$  be weakened to differentiability?
  - (b) Let  $\mathbb{R}^n \supseteq \mathscr{D}_f \xrightarrow{f} \mathbb{R}^m$  be  $C^1$  at  $p \in \mathscr{D}_f$ . Prove: for any  $\epsilon > 0$  exists  $\delta > 0$  such that for any  $\underline{x}, \underline{y} \in Ball_{\delta}(p)$  holds:  $||f(\underline{y}) f(\underline{x})|| \le ||f'|_p(\underline{y} \underline{x})|| + \epsilon ||\underline{y} \underline{x}||.$
- (3) Let  $[0,1] \xrightarrow{\gamma} \mathbb{R}^n$  be  $C^0[0,1] \cap C^1(0,1)$ , injective and such that  $\frac{d\gamma}{dt} \neq 0$  for any  $t \in [0,1]$ . (In this case the image,  $C = \gamma[0, 1]$ , is called a regular curve.)
  - (a) Prove: for each point  $p \in C$  there exists a choice of local coordinates in which the curve is (locally) a line. (Such a coordinate choice is called "a rectification of the curve".)
  - (b) Prove: there exists  $\delta > 0$  such that  $\gamma(t) + \vec{v} \notin C$  for any  $t \in [0, 1]$  and any  $0 \neq |\vec{v}| < \delta$  which is not tangent to C, i.e. not parallel to  $\frac{d\gamma}{dt}$ .
- (4) (a) Check that the function  $Mat_{n \times n}(\mathbb{R}) \xrightarrow{det} \mathbb{R}$  is  $C^{\infty}$ . Prove:  $(det)'|_A(\Delta) = trace(A^{\vee} \cdot \Delta)$ . (Here  $A^{\vee}$ is the adjugate of A).
  - (b) Let Σ<sub>r</sub><sup>n×n</sup> ⊆ Mat<sub>n×n</sub>(ℝ) be the subsets of matrices of rank ≤ r, here 0 ≤ r ≤ n.
    (i) Verify: {Ο} = Σ<sub>0</sub><sup>n×n</sup> ⊆ Σ<sub>1</sub><sup>n×n</sup> ⊆ ··· ⊆ Σ<sub>n</sub><sup>n×n</sup> = Mat<sub>n×n</sub>(ℝ).
    (ii) Present Σ<sub>rank≤1</sub><sup>2×2</sup> as a quadratic cone in ℝ<sup>4</sup>. What are its smooth points?
    (iii) Are {Σ<sub>r</sub><sup>n×n</sup>}<sub>r</sub> closed? Are they path-connected?

    - (iv) Prove:  $\sum_{n=1}^{n \times n}$  is a smooth hypersurface outside of  $\sum_{n=2}^{n \times n}$ .
  - (c) Compute  $f'|_0$  for the function  $f(t) = det(\mathbb{1} + t \cdot A)$ .
  - (d) Check that the function  $GL(n,\mathbb{R}) \ni A \to A^{-1} \in GL(n,\mathbb{R})$  is  $C^{\infty}$ . Compute the first derivative.
  - (e) Prove that  $O(n,\mathbb{R})$  is compact. Find min/max of the function trace on  $O(n,\mathbb{R})$ . (Hint: no need to do the machinery of extrema under constraints)

## (5) Define the map $Mat_{n\times n}(\mathbb{R}) \xrightarrow{exp} Mat_{n\times n}(\mathbb{R})$ by $exp(A) = \sum_{i=0}^{\infty} \frac{A^i}{j!}$ and the map $Mat_{n\times n}(\mathbb{R}) \supset Ball_1(\mathbb{I}) \xrightarrow{ln} Mat_{n\times n}(\mathbb{R})$

 $Mat_{n \times n}(\mathbb{R})$  by  $ln(\mathbb{I} - A) = -\sum_{i=1}^{\infty} \frac{A^{j}}{j}$ . (Convention:  $A^{0} = \mathbb{I}$ )

- (a) Compute exp(A),  $ln(\mathbb{I} A)$  for a diagonalizable matrix.
- (b) Prove: these power series converge absolutely, and the convergence is uniform on compact subsets. You can use  $||A \cdot B|| \leq ||A|| \cdot ||B||$ . (One can show that these maps are  $C^{\infty}$ .)
- (c) Prove: if A, B commute then exp(A+B) = exp(A)exp(B) and  $ln(A \cdot B) = ln(A) + ln(B)$ .
- (d) Fix some  $A \in Mat_{n \times n}(\mathbb{R})$  and define  $\mathbb{R}^1 \xrightarrow{\gamma} Mat_{n \times n}(\mathbb{R})$ , by  $\gamma(t) = exp(t \cdot A)$ . Compute  $\frac{d\gamma}{dt}$ .

