
Geometric Calculus 1, 201.1.1031

Homework 11
Fall 2019 (D.Kerner)

Below Box :=
n∏
i=1

[ai, bi] ⊂ Rn, {bi > ai}. We have defined voln
∏

[ai, bi] :=
∏

(bi − ai).

(1) The following statements have been claimed/partially proved in the lecture. Prove them.
(a) voln(Box)=

∑
�α∈P

voln(�α) for any partition.

(b) For any partitions P1, P2 of Box there exists a partition P ′ satisfying: P ′ ≤ P1, P2.
(c) If P ′ ≤ P then L(f, P ) ≤ L(f, P ′) ≤ U(f, P ′) ≤ U(f, P ). Therefore sup

P1

L(f, P1) ≤ inf
P2

U(f, P2).

(d) For any finite cover by boxes, X ⊂ ∪�α, there exists a partition P of X such that each box
of P lies in some �α.

(e) If the sets {Si}i∈N are all of measure zero then µn(∪Si) = 0.
(f) Prove: µn(X) = 0 iff for every ε > 0 exists a countable cover by open boxes, X ⊂ ∪�α, with∑

voln(�α) < ε.

(g) Let X ⊆ ∪Sα ⊂ Rn be a cover of a compact set by sets satisfying: int(Sα) = Sα. Suppose
{Sα} admits locally a finite subcover. (i.e. for any x ∈ X exists Ballδ(x) ∩ X that can be
covered by a finite number of {Sα}) Prove: ∪Sα contains a finite subcover.

(h) Let Rn ⊇ D
f→ R, with D compact, and assume o(f, x) < ε for any x ∈ D . Then exists δ > 0

such that o(f,Ballδ(x)) < ε for each x ∈ D .

(2) (a) Let pk be a convergent sequence of points in Rn. Prove: voln(∪pk) = 0.
(b) (Dis)prove: i. If X ⊂ Rn is an unbounded set then voln(X) 6= 0; µn(X) 6= 0.

ii. If voln(X) = 0 then voln(∂X) = 0. iii. If µn(X) = 0 then µn(∂X) = 0.
iv. If X ⊂ R1 is closed and µ1(X) = 0 then X has vol1 (possibly zero).
v. If voln(S1) = 0 and S2 is bounded then voln+m(S1 × S2) = 0.
vi. If µn(S) = 0 then µn+m(S × Rm) = 0. vii. If µn(X) = 0 then X 6= Rn.

(c) Suppose [a, b]
f→ R is monotonic. Prove: f is continuous off a set of measure zero. (Thus

integrable.)

(d) Let Rn ⊃ D
f→ Rm be continuous bounded function, and D a bounded set admitting voln.

Prove: voln+m(Γf ) = 0. (The case m = 1 was proved in the class.)
(e) Let X = {x| f(x) = 0} ⊂ Rn, where f is C1, and f ′ 6= 0 except for a subset of zero volume.

Prove: voln(X) = 0.
Give many examples of curves in R2, surfaces in R3, etc., of voln = 0.

(3) (a) We have defined
∫
D

fdnx =
∫
Box

f · 1IDd
nx. Prove: this does not depend on the choice of Box.

(b) (The functions are assumed integrable unless stated otherwise) Prove:
i. f is integrable iff for any ε > 0 exists a parition P for which U(f, P )− L(f, P ) < ε.
ii. If f, g are integrable then f + g and f · g are integrable.
iii. If f ≤ g then

∫
D

fdnx ≤
∫
D

gdnx. iv. |
∫
D

fdnx| ≤
∫
D

|f |dnx.

v. If volnD = 0 then
∫
D

fdnx = 0. vi. If f=g off a subset of volume 0 then
∫
D

fdnx=
∫
D

gdnx.

(c) Prove: for any X ⊂ Rn that admits volume and any ε > 0 there exists a compact subset
Y ⊆ X such that voln(X)− voln(Y ) < ε.

(d) If X ⊂ Rn, Y ⊂ Rm admit volume then also X × Y and voln+m(X × Y ) = voln(X)volm(Y ).

(4) For a < b verify:
a∫
b

fdx = −
∫

[a,b]

fdx = −
∫

[b,a]

fdx. (We have defined
∫
D

f in the unoriented manner)


