Geometric Calculus 1, 201.1.1031

Homework 11

Fall 2019 (D.Kerner)

Below $Box := \prod_{i=1}^{n} [a_i, b_i] \subset \mathbb{R}^n, \{b_i > a_i\}$. We have defined $vol_n \prod [a_i, b_i] := \prod (b_i - a_i)$.

- (1) The following statements have been claimed/partially proved in the lecture. Prove them.
 - (a) $vol_n(Box) = \sum_{\square_{\alpha} \in P} vol_n(\square_{\alpha})$ for any partition.

 - (b) For any partitions P_1, P_2 of *Box* there exists a partition P' satisfying: $P' \leq P_1, P_2$. (c) If $P' \leq P$ then $L(f, P) \leq L(f, P') \leq U(f, P') \leq U(f, P)$. Therefore $\sup L(f, P_1) \leq \inf U(f, P_2)$.
 - (d) For any finite cover by boxes, $X \subset \bigcup_{\alpha}$, there exists a partition P of X such that each box of P lies in some \Box_{α} .
 - (e) If the sets $\{S_i\}_{i \in \mathbb{N}}$ are all of measure zero then $\mu_n(\cup S_i) = 0$.
 - (f) Prove: $\mu_n(X) = 0$ iff for every $\epsilon > 0$ exists a countable cover by open boxes, $X \subset \bigcup_{\alpha}$, with $\sum vol_n(\Box_\alpha) < \epsilon.$
 - (g) Let $X \subseteq \bigcup S_{\alpha} \subset \mathbb{R}^n$ be a cover of a compact set by sets satisfying: $\overline{int(S_{\alpha})} = \overline{S_{\alpha}}$. Suppose $\{S_{\alpha}\}$ admits locally a finite subcover. (i.e. for any $x \in X$ exists $Ball_{\delta}(x) \cap X$ that can be covered by a finite number of $\{S_{\alpha}\}$) Prove: $\cup S_{\alpha}$ contains a finite subcover.
 - (h) Let $\mathbb{R}^n \supseteq \mathscr{D} \xrightarrow{f} \mathbb{R}$, with \mathscr{D} compact, and assume $o(f, x) < \epsilon$ for any $x \in \mathscr{D}$. Then exists $\delta > 0$ such that $o(f, Ball_{\delta}(x)) < \epsilon$ for each $x \in \mathscr{D}$.
- (a) Let p_k be a convergent sequence of points in \mathbb{R}^n . Prove: $vol_n(\cup p_k) = 0$. (2)
 - (b) (Dis)prove: i. If $X \subset \mathbb{R}^n$ is an unbounded set then $vol_n(X) \neq 0$; $\mu_n(X) \neq 0$. ii. If $vol_n(X) = 0$ then $vol_n(\partial X) = 0$. iii. If $\mu_n(X) = 0$ then $\mu_n(\partial X) = 0$. iv. If $X \subset \mathbb{R}^1$ is closed and $\mu_1(X) = 0$ then X has vol_1 (possibly zero). v. If $vol_n(S_1) = 0$ and S_2 is bounded then $vol_{n+m}(S_1 \times S_2) = 0$. vi. If $\mu_n(S) = 0$ then $\mu_{n+m}(S \times \mathbb{R}^m) = 0$. vii. If $\mu_n(X) = 0$ then $\overline{X} \neq \mathbb{R}^n$.
 - (c) Suppose $[a,b] \xrightarrow{f} \mathbb{R}$ is monotonic. Prove: f is continuous off a set of measure zero. (Thus integrable.)
 - (d) Let $\mathbb{R}^n \supset \mathscr{D} \xrightarrow{f} \mathbb{R}^m$ be continuous bounded function, and \mathscr{D} a bounded set admitting vol_n . Prove: $vol_{n+m}(\Gamma_f) = 0$. (The case m = 1 was proved in the class.)
 - (e) Let $X = \{\underline{x} | f(\underline{x}) = 0\} \subset \mathbb{R}^n$, where f is C^1 , and $f' \neq 0$ except for a subset of zero volume. Prove: $vol_n(X) = 0$.

Give many examples of curves in \mathbb{R}^2 , surfaces in \mathbb{R}^3 , etc., of $vol_n = 0$.

(3) (a) We have defined $\int_{\mathscr{D}} f d^n \underline{x} = \int_{Box} f \cdot \mathbb{1}_{\mathscr{D}} d^n \underline{x}$. Prove: this does not depend on the choice of Box.

(b) (The functions are assumed integrable unless stated otherwise) Prove: i. f is integrable iff for any $\epsilon > 0$ exists a parition P for which $U(f, P) - L(f, P) < \epsilon$. ii. If f, g are integrable then f + g and $f \cdot g$ are integrable. iii. If $f \leq g$ then $\int_{\mathscr{D}} f d^n \underline{x} \leq \int_{\mathscr{D}} g d^n \underline{x}$. iv. $|\int_{\mathscr{D}} f d^n \underline{x}| \leq \int_{\mathscr{D}} |f| d^n \underline{x}$. v. If $vol_n \mathscr{D} = 0$ then $\int_{\mathscr{D}} f d^n \underline{x} = 0$. vi. If f = g off a subset of volume 0 then $\int_{\mathscr{D}} f d^n \underline{x} = \int_{\mathscr{D}} g d^n \underline{x}$.

- (c) Prove: for any $X \subset \mathbb{R}^n$ that admits volume and any $\epsilon > 0$ there exists a compact subset $Y \subseteq X$ such that $vol_n(X) - vol_n(Y) < \epsilon$.
- (d) If $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ admit volume then also $X \times Y$ and $vol_{n+m}(X \times Y) = vol_n(X)vol_m(Y)$.

(4) For
$$a < b$$
 verify: $\int_{b}^{a} f dx = -\int_{[a,b]} f dx = -\int_{[b,a]} f dx$. (We have defined $\int_{\mathscr{D}} f$ in the unoriented manner)

