Geometric Calculus 1, 201.1.1031

Homework 13

Fall 2019 (D.Kerner)

(Some hints are on the next page)

- (1) (Cavalieri's principle) Suppose $S_1, S_2 \subset \mathbb{R}^n$ admit volume. Take the projection $\mathbb{R}^n_{\underline{x}} \xrightarrow{\pi} \mathbb{R}^k_{\underline{t}}$, $(x_1, \ldots, x_n) \to (x_1, \ldots, x_k)$ and its restrictions $\pi|_{S_1}, \pi|_{S_2}$. Suppose $vol_{n-k}(\pi|_{S_1}^{-1}(\underline{t})) = vol_{n-k}(\pi|_{S_2}^{-1}(\underline{t}))$ for each t. Prove: $vol_n(S_1) = vol(S_2)$.
- - (b) Compute $\iiint_V zye^{x+y^2} dx dy dz$, where $V = \left\{ 0 \le z \le 2, \frac{x}{3} \le z \le \frac{x}{2}, \frac{y^2}{4} \le z \le y^2 \right\} \subset \mathbb{R}^3$.
 - (c) Let $Ball_R^{||*||_p} := \{\underline{x} \mid ||\underline{x}||_p < R\} \subset \mathbb{R}^2$. Reduce $vol_2(Ball_R^{||*||_p})$ to a (possibly improper) integral of the form $\int_0^{2\pi} \cdots d\phi$. Compute it for $p = 1, \frac{1}{2}, \frac{1}{3}$.
 - (d) ("Because of the symmetry...") Suppose f is integrable on $S \subset \mathbb{R}^n$ and both f, S are invariant under the map $\{x_j \to -x_j\}$, for any j. Prove: $\int_S f d^n \underline{x} = 2^n \cdot \int_{S \cap \{x_1, \dots, x_n > 0\}} f d^n \underline{x}$.
 - (e) Suppose $S \subset \{y > 0\} \subset \mathbb{R}^2_{yz}$ admits vol_2 and V is obtained by the rotation of S around \hat{z} -axis. Compute $vol_3(V)$.
 - i. In particular, compute the volume bounded by the torus, defined in hwk.0, q. 5.e.
 - ii. Re-compute this by introducing the toric coordinates, parametrizing the torus.
- (3) Small things around the proof of the change of variables
 - (a) Does every open bounded set admit volume? What about compact sets?
 - (b) Take an open cover of a compact set, $K \subset \cup \mathcal{U}_{\alpha} \subset \mathbb{R}^n$. Prove: there exists a partition $P = \{\Box_i\}$ such that for each *i* either $\Box_i \subset \mathcal{U}_{\alpha}$ or $\Box_i \cap K = \emptyset$.
- (4) Let $\mathbb{R}^n \supseteq \mathcal{U} \xrightarrow{\phi} \mathbb{R}^m$ be C^1 , with m > n. Prove: $vol_m(\phi(S)) = 0$ for any compact $S \subset \mathcal{U}$.
- (5) (a) Let $Box_{\underline{y}} = \prod [a_i, y_i]$ and define $F(\underline{y}) := \int_{Box_y} f d^n \underline{x}$, for a continuous $\mathbb{R}^n \xrightarrow{f} \mathbb{R}$. Compute F'.
 - (b) Suppose $\mathbb{R} \xrightarrow{f} \mathbb{R}$ is continuous, define $F(t) := \int_{Ball_t(0)} f(||\underline{x}||) d^n \underline{x}$. Compute F'(t).
 - (c) For f = 1 this can be interpreted as $vol_{n-1}(S^{n-1})$. (In the next semester.)
- (6) For a C^1 function $\mathbb{R}^n \supseteq \mathscr{D} \xrightarrow{f} \mathbb{R}^n$ take the set of critical points, $Crit(f) = \{x \in \mathscr{D} | rank(f'|_x) < n\}.$
 - (a) For any $\epsilon > 0$ give an example of surjective function $(0,1) \xrightarrow{f} \mathbb{R}$ such that $vol_1Crit(f) = 1 \epsilon$.
 - (b) We prove Sard's lemma: The set of critical values is of measure zero, $\mu_n(f(Crit(f))) = 0$.
 - (i) Verify Sard's lemma for linear maps.
 - (ii) For any $x \in Crit(f)$ prove: $\lim_{\epsilon \to 0} \frac{vol_n(f(Ball_{\epsilon}(x)))}{vol_n Ball_{\epsilon}(x)} = 0.$
 - (iii) Finish the proof of Sard's lemma by compact/countable arguments.
 - (c) The general Sard-Morse theorem generalizes Sard's lemma to C^k maps $\mathbb{R}^n \supseteq \mathscr{D} \xrightarrow{f} \mathbb{R}^m$, with $k = max\{1, n m + 1\}.$
 - (d) (i) Let $\mathbb{R}^2 \xrightarrow{f} \mathbb{R}$ be C^2 and consider the subsets $C_t := \{(x, y) | f(x, y) = t\} \subset \mathbb{R}^2$, for $t \in \mathbb{R}$. Prove: for almost all values of t these subsets are smooth curves (or empty).
 - (ii) $\mathbb{R}^n \supseteq \mathscr{D} \xrightarrow{f} \mathbb{R}$ is called a (C^1) Morse function if all its critical points are non-degenerate, i.e. if $f'|_x = 0$ then $det[f''|_x] \neq 0$. Prove: for any f the function $f(\underline{x}) - \sum a_i x_i$ is Morse for almost all $\underline{a} \in \mathbb{R}^n$ (except of a set of measure zero).

(Because of this some engineers believe that there are no degenerate critical points.)

- (a) (For q.3.b.) Consider the function $f(x) = max \{ dist(x, \partial \mathcal{U}_{\alpha} | x \in \mathcal{U}_{\alpha}) \}$) (b) (For q.4.) If *Box* is "shrunk" by a factor of *C* then $vol_m(\phi(Box))$ reduces by a factor of C^m . (c) (For q.6.b.ii) Helpful: use $GL(n, \mathbb{R})$ on $f = (f_1, \ldots, f_n)$ to assume $f'_n|_x = 0$.