Geometric Calculus 1, 201.1.1031

Homework 14

Fall 2019 (D.Kerner)

- (1) (a) Verify: finite intersections/unions of exhaustions are exhaustions.
 - (b) Given $S \xrightarrow{f} \mathbb{R}_{\geq 0}$, suppose $\lim \int_{S_i} f d^n \underline{x} < \infty$ for a particular exhaustion $\cup S_j = S$. Prove: the integral $\int_{S} f d^{n} \underline{x}$ converges.
- (2) (a) For $\underline{x} \in \mathbb{R}^n$ define $h_k(\underline{x}) = \sum_{i=1}^k x_i^2$. Check the convergence (for $k \le n, \alpha, \beta > 0$): i. $\int_{Ball_1(0)} \frac{d^n \underline{x}}{h_k^k ln(1+h_k(\underline{x}))^\beta}$ ii. $\int_{\mathbb{R}^n \setminus Ball_1(0)} \frac{d^n \underline{x}}{h_k^k ln(1+h_k(\underline{x}))^\beta}$. (b) Suppose $f, g \ge 0$ and the integrals $\int_{\mathbb{R}^n} f(\underline{x}) d^n \underline{x}$, $\int_{\mathbb{R}^m} g(\underline{y}) d^m \underline{y}$ converge. Prove:
 - (c) Compute $\int_{\mathbb{R}^2} e^{-x^2 y^2} dx dy$. Deduce $\int_{-\infty}^{\infty} e^{-x^2} dx$.

 - (d) Using $\int_{\mathbb{R}^n} e^{-||\underline{x}||^2} d^n \underline{x}$ express $vol_n Ball_1^{(n)}(0)$ via an integral in one variable. (e) For which α does $\int_{0 \le y \le x^{\alpha} \le 1} \frac{dxdy}{x^2 + y^2}$ converge?

 - (f) Can we paint an infinite wall with a finite amount of ink?
- (3) (a) For any sequence of open sets, $X_j \subset (j, j+1)$, construct a continuous function satisfying:

 - $\int_{X_j} f dx = \frac{(-1)^j}{j}, \ f|_{\mathbb{R}^1 \setminus \cup X_j} = 0.$ Give two exhaustions of $\cup X_j$ with different limits of $\int f dx$. (b) Does $\int_1^\infty \cos(x^2) dx$ converge in the sense of Calculus 2? Does $\int_{[1,\infty)} \cos(x^2) dx$ converge? (c) Compute $\lim_{n \to \infty} \iint_{x^2+y^2 \le 2\pi n+\pi} \sin(x^2+y^2) dx dy, \qquad \lim_{n \to \infty} \iint_{x^2+y^2 \le 2\pi n} \sin(x^2+y^2) dx dy.$
- (4) (a) Assume S admits volume, let S_i be an exhaustion. Prove: $\lim vol_n(S_i) = vol_n(S)$.
 - (b) Assume $\int_{S} f d^{n} \underline{x}$ converges. Prove: $\int_{S} f d^{n} \underline{x} = \lim \int_{S_{i}} f d^{n} \underline{x}$.
- (5) (a) Find the tangent plane to the graph of $\mathbb{R}^2 \supset \mathscr{D} \xrightarrow{f,g} \mathbb{R}^2$ at the point (x,y) = (-2,-2), where $f(x,y) - g(x,y)^2/2 = x, g(x,y) - f(x,y)^2/2 = y.$
 - (b) Consider the curve $C = \{f_1(\underline{x}) = 0 = f_2(\underline{x})\} \subset \mathbb{R}^3$, where f_1, f_2 are C^1 and $rank(f'|_{\underline{x}_0}) = 2$. Prove: the tangent line to C at \underline{x}_0 is given by $\{\underline{x} \mid \underline{x} - \underline{x}_0 \in ker(f'|_{\underline{x}_0})\}$.
- (6) (The joy of bump functions)
 - (a) Take a C^{∞} function $\mathbb{R} \xrightarrow{\tau} \mathbb{R}_{>0}$ that is flat at 0 and $\tau|_{\mathbb{R}\setminus\{0\}} > 0$. (e.g. $\tau(x) = e^{-\frac{1}{x^2}}$)
 - (b) Let $f(x) := \tau(x^2 1)$ for $|x| \le 1$, and 0 on $\mathbb{R}^1 \setminus [-1, 1]$. Verify: $f \in C^{\infty}(\mathbb{R})$. (A bump function.)
 - (c) Construct a monotonic function $g \in C^{\infty}(\mathbb{R})$ such that $g|_{(-\infty,0]}=0$ and $g|_{[1,\infty)}=1$. (e.g. $g(x):=\frac{\int_0^x f(t)dt}{\int_0^1 f(t)dt}$)
 - (d) For the following open sets construct a C^{∞} function satisfying: $f|_{\mathcal{U}} > 0$, $f|_{\mathbb{R}^n \setminus \mathcal{U}} = 0$. iii. $\mathcal{U} \subset \mathbb{R}^n$ any open set. i. $\mathcal{U} = Ball_r(a)$ ii. $\mathcal{U} = Int(Box)$ (Useful: open sets have nice coverings by boxes) This proves a theorem of Whitney: any closed subset of \mathbb{R}^n is the zero locus of a C^{∞} function.
 - (e) Let $K \subset \mathcal{U} \subset \mathbb{R}^n$ be a compact inside an open. Construct a C^{∞} function f such that $f|_K = 1$ and $f|_{\mathbb{R}^n \setminus \mathcal{U}} = 0$. (Hint: if $f|_K \ge 1$ then you can take $g \circ f$, with g from (c).)

Such bump functions smoothen \mathbb{I}_K . They are highly useful in Analysis/Differential Geometry. For geometries over other fields (and Algebra/Arithmetics) one works hard to substitute them.

