Geometric Calculus 1, 201.1.1031 Homework 14
 Fall 2019 (D.Kerner)

(1) (a) Verify: finite intersections/unions of exhaustions are exhaustions.
(b) Given $S \xrightarrow{f} \mathbb{R}_{\geq 0}$, suppose $\lim \int_{S_{j}} f d^{n} \underline{x}<\infty$ for a particular exhaustion $\cup S_{j}=S$.

Prove: the integral $\int_{S} f d^{n} \underline{x}$ converges.
(2) (a) For $\underline{x} \in \mathbb{R}^{n}$ define $h_{k}(\underline{x})=\sum_{i=1}^{k} x_{i}^{2}$. Check the convergence (for $k \leq n, \alpha, \beta>0$):
i. $\int_{\text {Ball }_{1}(0)} \frac{d^{n} x}{h_{k}^{\alpha} \ln \left(1+h_{k}(\underline{x})\right)^{\beta}}$
ii. $\int_{\mathbb{R}^{n} \backslash \operatorname{Ball}_{1}(0)} \frac{d^{n} x}{h_{k}^{\alpha} \ln \left(1+h_{k}(\underline{x})\right)^{\beta}}$.
(b) Suppose $f, g \geq 0$ and the integrals $\int_{\mathbb{R}^{n}} f(\underline{x}) d^{n} \underline{x}, \int_{\mathbb{R}^{m}} g(\underline{y}) d^{m} \underline{y}$ converge. Prove:
$\left(\int_{\mathbb{R}^{n}} f(\underline{x}) d^{n} \underline{x}\right) \cdot\left(\int_{\mathbb{R}^{m}} g(\underline{y}) d^{m} \underline{y}\right)=\int_{\mathbb{R}^{n+m}} f(\underline{x}) g(\underline{y}) d^{n} \underline{x} d^{m} \underline{y}$.
(c) Compute $\int_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} d x d y$. Deduce $\int_{-\infty}^{\infty} e^{-x^{2}} d x$.
(d) Using $\int_{\mathbb{R}^{n}} e^{-\|\underline{x}\|^{2}} d^{n} \underline{x}$ express vol $_{n}$ Ball $_{1}^{(n)}(0)$ via an integral in one variable.
(e) For which α does $\int_{0 \leq y \leq x^{\alpha} \leq 1} \frac{d x d y}{x^{2}+y^{2}}$ converge?
(f) Can we paint an infinite wall with a finite amount of ink?
(3) (a) For any sequence of open sets, $X_{j} \subset(j, j+1)$, construct a continuous function satisfying: $\int_{X_{j}} f d x=\frac{(-1)^{j}}{j},\left.f\right|_{\mathbb{R}^{1} \backslash \cup X_{j}}=0$. Give two exhaustions of $\cup X_{j}$ with different limits of $\int f d x$.
(b) Does $\int_{1}^{\infty} \cos \left(x^{2}\right) d x$ converge in the sense of Calculus 2? Does $\int_{[1, \infty)} \cos \left(x^{2}\right) d x$ converge?
(c) Compute $\lim _{n \rightarrow \infty^{2}+y^{2} \leq 2 \pi n+\pi} \iint_{x^{2}} \sin \left(x^{2}+y^{2}\right) d x d y, \quad \lim _{n \rightarrow \infty} \iint_{x^{2}+y^{2} \leq 2 \pi n} \sin \left(x^{2}+y^{2}\right) d x d y$.
(4) (a) Assume S admits volume, let S_{i} be an exhaustion. Prove: $\lim \operatorname{vol}_{n}\left(S_{i}\right)=\operatorname{vol}_{n}(S)$.
(b) Assume $\int_{S} f d^{n} \underline{x}$ converges. Prove: $\int_{S} f d^{n} \underline{x}=\lim \int_{S_{j}} f d^{n} \underline{x}$.
(5) (a) Find the tangent plane to the graph of $\mathbb{R}^{2} \supset \mathscr{D} \xrightarrow{f, g} \mathbb{R}^{2}$ at the point $(x, y)=(-2,-2)$, where $f(x, y)-g(x, y)^{2} / 2=x, g(x, y)-f(x, y)^{2} / 2=y$.
(b) Consider the curve $C=\left\{f_{1}(\underline{x})=0=f_{2}(\underline{x})\right\} \subset \mathbb{R}^{3}$, where f_{1}, f_{2} are C^{1} and $\operatorname{rank}\left(f^{\prime} \mid \underline{x}_{0}\right)=2$. Prove: the tangent line to C at \underline{x}_{0} is given by $\left\{\underline{x} \mid \underline{x}-\underline{x}_{0} \in \operatorname{ker}\left(\left.f^{\prime}\right|_{\underline{x}_{0}}\right)\right\}$.
(6) (The joy of bump functions)
(a) Take a C^{∞} function $\mathbb{R} \xrightarrow{\tau} \mathbb{R}_{\geq 0}$ that is flat at 0 and $\left.\tau\right|_{\mathbb{R} \backslash\{0\}}>0$. (e.g. $\tau(x)=e^{-\frac{1}{x^{2}}}$)
(b) Let $f(x):=\tau\left(x^{2}-1\right)$ for $|x| \leq 1$, and 0 on $\mathbb{R}^{1} \backslash[-1,1]$. Verify: $f \in C^{\infty}(\mathbb{R})$. (A bump function.)
(c) Construct a monotonic function $g \in C^{\infty}(\mathbb{R})$ such that $\left.g\right|_{(-\infty, 0]}=0$ and $\left.g\right|_{[1, \infty)}=1$. (e.g. $g(x):=\frac{\int_{0}^{x} f(t) d t}{\int_{0}^{1} f(t) d t}$)
(d) For the following open sets construct a C^{∞} function satisfying: $\left.f\right|_{\mathcal{U}}>0,\left.f\right|_{\mathbb{R}^{n} \backslash \mathcal{U}}=0$.
$\begin{array}{lll}\text { i. } \mathcal{U}=\operatorname{Ball}_{r}(a) & \text { ii. } \mathcal{U}=\operatorname{Int}(B o x) & \text { iii. } \mathcal{U} \subset \mathbb{R}^{n} \text { any open set. }\end{array}$
(Useful: open sets have nice coverings by boxes)
This proves a theorem of Whitney: any closed subset of \mathbb{R}^{n} is the zero locus of a C^{∞} function.
(e) Let $K \subset \mathcal{U} \subset \mathbb{R}^{n}$ be a compact inside an open. Construct a C^{∞} function f such that $\left.f\right|_{K}=1$ and $\left.f\right|_{\mathbb{R}^{n} \backslash \mathcal{U}}=0$. (Hint: if $\left.f\right|_{K} \geq 1$ then you can take $g \circ f$, with g from (c).)
Such bump functions smoothen \mathbb{I}_{K}. They are highly useful in Analysis/Differential Geometry. For geometries over other fields (and Algebra/Arithmetics) one works hard to substitute them.

