Geometric Calculus 1, 201.1.1031

Homework 2

Fall 2019 (D.Kerner)
(1) (a) Suppose for some $S \subset \mathbb{R}^{n}$ holds: $\mathbb{R}^{n} \backslash S$ has no interior points. (Dis)Prove: $\bar{S}=\mathbb{R}^{n}, \operatorname{int}(S) \neq \varnothing$.
(b) Suppose for some $S \subset \mathbb{R}^{2}$ and $x \notin S$ holds: every line through x contains an open segment that contains x and lies fully in $\mathbb{R}^{2} \backslash S$. Does this imply $x \notin \bar{S}$? (Hint: no need to look for monsters, consider just parabolas.)
(c) Fix a vector $\vec{v} \in \mathbb{R}^{n}$ and define the shift $T_{\vec{v}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, by $\vec{x} \rightarrow \vec{x}+\vec{v}$. Prove: if a subset $S \subset \mathbb{R}^{n}$ is open/closed then $T_{\vec{v}}(S)$ is open/closed.
(2) (a) Take a sequence of points $\left\{\underline{x}_{k}\right\}$ in \mathbb{R}^{n}, here $\underline{x}_{k}=\left(x_{1, k}, \ldots, x_{n, k}\right)$. Prove:
i. $\underline{x}_{k} \rightarrow \underline{x}_{0} \in \mathbb{R}^{n}$ iff $x_{j, k} \rightarrow x_{j, 0}$ for any j. ii. If $\underline{x}_{k} \rightarrow \underline{x}_{0}$ then for any subsequence holds: $\underline{x}_{k_{j}} \rightarrow \underline{x}_{0}$.
(b) Prove: a subset $X \subset \mathbb{R}^{n}$ is closed iff for any sequence $\underline{x}_{k} \in X$ the convergence in \mathbb{R}^{n} implies that in X.
(c) A drunken frog jumps in \mathbb{R}^{n}. The direction and the length of each jump are random, but the lengths are bounded, $d_{k} \leq \frac{1}{k \cdot \ln (k+1)}$ (Due to the heavy load of homeworks.) Does the frog necessarily converge to a point? Is the set of its steps necessarily a closed subset of \mathbb{R}^{2} ? Can this set have the non-empty interior?
(3) Given a subset $X \subset \mathbb{R}^{n}$ we have defined the induced topology on X.
(a) Describe the open sets on: i. $[a, b] \subset \mathbb{R}^{1}$,
ii. $\quad S^{2} \subset \mathbb{R}^{3}$.
(b) Solve question 8 of homework 1 with \mathbb{R}^{n} replaced by X.
(4) (a) Let $f(x, y)=\left\{\begin{array}{l}y^{2} / x, x \neq 0 \\ 0, x=0\end{array}\right.$. Prove: for every line l through the origin the restriction $\left.f\right|_{l}$ is continuous. Is the function $f(x, y)$ continuous at $(0,0)$?
(b) Let $f(x, y)=\left\{\begin{array}{l}\frac{e^{-\frac{1}{y^{2}}}}{x}, x \cdot y \neq 0 \\ 0, x \cdot y=0\end{array}\right.$. Prove: for every curve $C=\left\{y=a \cdot|x|^{\beta}\right\}$ the restriction $\left.f\right|_{C}$ is continuous. Is the function $f(x, y)$ continuous at $(0,0)$?
(5) (Dis)Prove the following statements:
(a) $\mathscr{D}_{f} \xrightarrow{f} \mathbb{R}^{m}$ is continuous iff the preimage of any closed subset is closed.
(b) $\mathscr{D}_{f} \xrightarrow{f} \mathbb{R}^{m}$ is continuous iff the image of any open subset is open.
(c) $\mathscr{D}_{f} \xrightarrow{f} \mathbb{R}^{m}$ is continuous iff the image of any closed subset is closed.
(d) $\mathscr{D}_{f} \xrightarrow{f} \mathbb{R}^{m}$ is continuous iff its graph is a closed subset, $\Gamma_{f} \subset \mathbb{R}^{n+m}$.
(6) (a) Take a matrix $A \in M a t_{m \times n}(\mathbb{R})$ and define the map $\mathbb{R}^{n} \xrightarrow{\phi_{A}} \mathbb{R}^{m}, \vec{x} \rightarrow A \vec{x}$. Is the image of an open/closed subset open/closed? (If not, which additional assumption is needed?)
(b) Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sin \left(x_{1}-x_{2}^{3}\right)+e^{x_{4}-x_{3}^{4}}+\tan \left(x_{2}\right) \cdot \ln \left(x_{1}\right)-100$ and consider the subsets: $X_{<}:=\left\{\underline{x} \in \mathbb{R}^{4} \mid f(\underline{x})<0\right\}, \quad X_{=}:=\left\{\underline{x} \in \mathbb{R}^{4} \mid f(\underline{x})=0\right\}, \quad X_{\leq}:=\left\{\underline{x} \in \mathbb{R}^{4} \mid f(\underline{x}) \leq 0\right\}$.
Are they closed/open? Identify the boundaries/closures/interiors.
(7) For $\mathscr{D}_{f} \xrightarrow{f} \mathbb{R}^{m}$ and $x_{0} \in \overline{\mathscr{D}_{f}}$ define the limit $\lim _{x \rightarrow x_{0}} f(x)$ in two ways: via point-sequences (by Heine) and via open balls (by Cauchy).
(a) Prove the equivalence of the definitions.
(b) (Sandwich lemma) Suppose the functions $\mathscr{D} \xrightarrow{f, g_{h} h} \mathbb{R}^{1}$ satisfy: $f(x) \leq g(x) \leq h(x)$. Prove: if $\lim _{x \rightarrow x_{0}} f(x)=$ $\lim _{x \rightarrow x_{0}} h(x)=l$ then $\lim _{x \rightarrow x_{0}} g(x)$ exists and equals to l.
(8) (a) (Dis)Prove: finite products, unions, intersections of compact sets (in \mathbb{R}^{n}) are compact.
(b) (Dis)Prove: $S \subset \mathbb{R}^{n}$ is compact iff all its projections onto coordinate hyperplanes ($\left\{x_{j}=0\right\} \subset \mathbb{R}^{n}$) are compact.

