Geometric Calculus 1, 201.1.1031

Homework 3

Fall 2019 (D.Kerner)

(1) Check the domain/continuity of the function $f(x,y) = \sqrt{y^2 - 4} \cdot \ln(5 - x^2 - y^2)$. Draw the level curve at the height 0. Check the existence of the limits: i. $\lim_{(x,y)\to(0,-2)} f(x,y)$ ii. $\lim_{(x,y)\to(0,\sqrt{5})} f(x,y)$ iii. $\lim_{(x,y)\to(0,\sqrt{5})} f(x,y)$ (2) Define $\mathbb{R}^2 \xrightarrow{f} \mathbb{R}$ by $f(x,y) = \frac{(x^2 + y^4)^3}{1 + x^6 y^4}$. Prove: $\lim_{|x|\to\infty} f(x,k\cdot x) = \infty$, for any $k \in \mathbb{R}$. Does $\lim_{|(x,y)|\to\infty} f(x,y)$ exist?

(3) In the following cases the domain of definition is not a closed subset of \mathbb{R}^n . To which maximal domain can you extend the function in a continuous way?

i.
$$f(x,y) = x \cdot ln(x^2 + 3y^2)$$
 ii. $f(x,y) = y \cdot sin\frac{1}{x}$ iii. $f(x,y) = \frac{x^2y}{x^4 + y^2}$ iv. $f(x,y,z) = \frac{sin(x+y+z) - sin(x+y-z)}{z}$

(4) (a) Compute the repeated limit: $\lim_{m \to \infty} \left(\lim_{n \to \infty} \cos^n(\pi \cdot m! \cdot x) \right)$. Does the double limit $\lim_{m,n \to \infty} \cos^n(\pi \cdot m! \cdot x)$ exist?

- (b) Denote the coordinates in $\mathbb{R}^{n_x} \times \mathbb{R}^{n_y}$ by $(\underline{x}, \underline{y})$ and consider a function $\mathbb{R}^{n_x+n_y} \xrightarrow{f} \mathbb{R}$. Suppose there exists $\lim_{(\underline{x},\underline{y})\to(\underline{x}_0,\underline{y}_0)} f(\underline{x},\underline{y})$. Suppose for some $\epsilon > 0$ holds: for any $(\underline{x},\underline{y}_0) \in Ball_{\epsilon}(\underline{x}_0,\underline{y}_0)$ exists $\lim_{y\to y_0} f(\underline{x},\underline{y})$. Prove: $\lim_{(\underline{x},\underline{y})\to(\underline{x}_0,\underline{y}_0)}f(\underline{x},\underline{y})=\lim_{\underline{x}\to\underline{x}_0}\Big(\lim_{\underline{y}\to\underline{y}_0}f(\underline{x},\underline{y})\Big).$
- (5) (a) A sequence of points $\{\underline{x}_k\}$ in \mathbb{R}^n is called a Cauchy sequence if for any ϵ exists N such that $||\underline{x}_k \underline{x}_{k'}|| < \epsilon$ for any k, k' > N. Prove: any Cauchy sequence in \mathbb{R}^n converges.
 - (b) Take a sequence of non-empty compact sets, $K_1 \supseteq K_2 \supseteq \cdots$. Prove: $\cap K_i \neq \emptyset$. (Does this hold for closed sets? For open sets?)
 - (c) Suppose $S \subset \mathbb{R}^n$ is non-compact. Show that there exists an unbounded continuous function on S.
 - (d) Prove: a closed subset of a compact set is compact.
 - (e) Suppose a function $S_1 \xrightarrow{f} S_2$ is continuous, bijective and S_1 is compact. Prove: f^{-1} is also continuous. What can happen when S_1 is non-compact?
- (6) Define the distance between the subsets $S_1, S_2 \subset \mathbb{R}^n$ by $d(S_1, S_2) := \inf\{d(s_1, s_2) | s_i \in S_i\}$. Prove:
 - (a) d(pt, S) = 0 iff $pt \in \overline{S}$. (Give an example with $pt \notin S$.)

 - (b) If S is closed then there exists $s \in S$ such that d(pt, S) = d(pt, s). (What can happen if S is not closed?) (c) If $S_1, S_2 \subset \mathbb{R}^n$ are bounded then $d(S_1, S_2) = 0$ iff $\overline{S_1} \cap \overline{S_2} \neq \emptyset$. (Give an example of bounded sets with $S_1 \cap S_2 = \emptyset$ but $d(S_1, S_2) = 0$. Given an example of unbounded sets with $\overline{S_1} \cap \overline{S_2} = \emptyset$ but $d(S_1, S_2) = 0$.)
 - (d) If S_1, S_2 are compact then exist $s_1 \in S_1, s_2 \in S_2$ such that $d(s_1, s_2) = d(S_1, S_2)$.
 - (e) Suppose for $S_1, S_2 \subset \mathbb{R}^n$ holds: $d(S_1, S_2) > 0$. Then there exists a continuous function $\mathbb{R}^n \xrightarrow{f} \mathbb{R}$ such that $f|_{S_1} = 0$ and $f|_{S_2} = 1$. (For example, one can define $f(x) := 2\frac{d(x,S_1)}{d(S_1,S_2)}$, if $d(x,S_1) \leq \frac{d(S_1,S_2)}{2}$, and f(x) = 1otherwise. Check the continuity.)

This is a very strong separation property. You will see more of this kind in the course "Introduction to Topology". Conclude: for any compact sets with $\overline{S_1} \cap \overline{S_2} = \emptyset$ there exist open neighborhoods, $S_i \subset \mathcal{U}_i \subset \mathbb{R}^n$ such that $d(\mathcal{U}_1, \mathcal{U}_2) > 0.$ (In particular, $\overline{\mathcal{U}_1} \cap \overline{\mathcal{U}_2} = \emptyset$.)

- (7) (a) Which of the following sets (defined by parametrization) are path-connected?
 - i. $\{(\frac{1}{t^2}, \frac{1}{t^3}) | t \in (1, \infty)\} \coprod \{0, 0\}$ ii. $\{r = \frac{1}{1+\phi} | \phi \in [1, \infty)\} \coprod \{(0, 0)\} (r, \phi \text{ are the polar coordinates in } \mathbb{R}^2).$ (b) Suppose the subsets $\{X_\alpha\}$ of \mathbb{R}^n are path-connected, and $\cap X_\alpha \neq \emptyset$. Prove: $\cup X_\alpha$ is path-connected. (Here the
 - collection is not necessarily finite)
 - (c) Let $\{X_i\}$ be a finite collection of path-connected sets. Prove: $\prod X_i$ is path-connected.
 - (d) Prove: path-connectedness is preserved under linear transformations and shifts of \mathbb{R}^n .
 - (e) Prove: $S^{n-1} := \{\underline{x} \mid |\underline{x}| = r\} \subset \mathbb{R}^{n>1}$ is path connected. Do this in as many ways as you can, e.g.: by considering the polar coordinates in \mathbb{R}^n ; by presenting S^{n-1} as the union of two graphs of continuous functions; by intersecting S^{n-1} with a hyperplane.
 - (f) Let $X \subset \mathbb{R}^n$ and suppose $a \in int(X)$, $b \in int(\mathbb{R}^n \setminus \overline{X})$. Prove: any path from a to b intersects ∂X .