
Geometric Calculus 1, 201.1.1031

Homework 3
Fall 2019 (D.Kerner)

(1) Check the domain/continuity of the function f(x, y) =
√
y2 − 4 · ln(5−x2−y2). Draw the level curve at the height 0.

Check the existence of the limits: i. lim
(x,y)→(0,−2)

f(x, y) ii. lim
(x,y)→(0,

√
5)
f(x, y) iii. lim

(x,y)→(1,2)
f(x, y).

(2) Define R2 f→ R by f(x, y) = (x2+y4)3

1+x6y4 . Prove: lim
|x|→∞

f(x, k · x) =∞, for any k ∈ R. Does lim
|(x,y)|→∞

f(x, y) exist?

(3) In the following cases the domain of definition is not a closed subset of Rn. To which maximal domain can you
extend the function in a continuous way?

i. f(x, y) = x·ln(x2+3y2) ii. f(x, y) = y·sin 1
x iii. f(x, y) = x2y

x4+y2 iv. f(x, y, z) = sin(x+y+z)−sin(x+y−z)
z .

(4) (a) Compute the repeated limit: lim
m→∞

(
lim
n→∞

cosn(π ·m! · x)
)

. Does the double limit lim
m,n→∞

cosn(π ·m! · x) exist?

(b) Denote the coordinates in Rnx × Rny by (x, y) and consider a function Rnx+ny
f→ R. Suppose there exists

lim
(x,y)→(x0,y0

)
f(x, y). Suppose for some ε > 0 holds: for any (x, y

0
) ∈ Ballε(x0, y0) exists lim

y→y
0

f(x, y). Prove:

lim
(x,y)→(x0,y0

)
f(x, y) = lim

x→x0

(
lim
y→y

0

f(x, y)
)

.

(5) (a) A sequence of points {xk} in Rn is called a Cauchy sequence if for any ε exists N such that ||xk − xk′ || < ε for
any k, k′ > N . Prove: any Cauchy sequence in Rn converges.

(b) Take a sequence of non-empty compact sets, K1 ⊇ K2 ⊇ · · · . Prove: ∩Ki 6= ∅. (Does this hold for closed sets?
For open sets?)

(c) Suppose S ⊂ Rn is non-compact. Show that there exists an unbounded continuous function on S.
(d) Prove: a closed subset of a compact set is compact.

(e) Suppose a function S1
f→ S2 is continuous, bijective and S1 is compact. Prove: f−1 is also continuous. What

can happen when S1 is non-compact?

(6) Define the distance between the subsets S1, S2 ⊂ Rn by d(S1, S2) := inf{d(s1, s2)| si ∈ Si). Prove:
(a) d(pt, S) = 0 iff pt ∈ S. (Give an example with pt 6∈ S.)
(b) If S is closed then there exists s ∈ S such that d(pt, S) = d(pt, s). (What can happen if S is not closed?)
(c) If S1, S2 ⊂ Rn are bounded then d(S1, S2) = 0 iff S1 ∩ S2 6= ∅. (Give an example of bounded sets with

S1 ∩ S2 = ∅ but d(S1, S2) = 0. Given an example of unbounded sets with S1 ∩ S2 = ∅ but d(S1, S2) = 0.)
(d) If S1, S2 are compact then exist s1 ∈ S1, s2 ∈ S2 such that d(s1, s2) = d(S1, S2).

(e) Suppose for S1, S2 ⊂ Rn holds: d(S1, S2) > 0. Then there exists a continuous function Rn f→ R such that

f |S1
= 0 and f |S2

= 1. (For example, one can define f(x) := 2 d(x,S1)
d(S1,S2)

, if d(x, S1) ≤ d(S1,S2)
2 , and f(x) = 1

otherwise. Check the continuity.)
This is a very strong separation property. You will see more of this kind in the course “Introduction to Topology”.
Conclude: for any compact sets with S1 ∩ S2 = ∅ there exist open neighborhoods, Si ⊂ Ui ⊂ Rn such that
d(U1,U2) > 0. (In particular, U1 ∩ U2 = ∅.)

(7) (a) Which of the following sets (defined by parametrization) are path-connected?
i. {( 1

t2 ,
1
t3 )| t ∈ (1,∞)}

∐
{0, 0} ii. {r = 1

1+φ | φ ∈ [1,∞)}
∐
{(0, 0)} (r, φ are the polar coordinates in R2).

(b) Suppose the subsets {Xα} of Rn are path-connected, and ∩Xα 6= ∅. Prove: ∪Xα is path-connected. (Here the
collection is not necessariy finite)

(c) Let {Xi} be a finite collection of path-connected sets. Prove:
∏
Xi is path-connected.

(d) Prove: path-connectedness is preserved under linear transformations and shifts of Rn.
(e) Prove: Sn−1 := {x| |x| = r} ⊂ Rn>1 is path connected. Do this in as many ways as you can, e.g.: by

considering the polar coordinates in Rn; by presenting Sn−1 as the union of two graphs of continuous functions;
by intersecting Sn−1 with a hyperplane.

(f) Let X ⊂ Rn and suppose a ∈ int(X), b ∈ int(Rn \X). Prove: any path from a to b intersects ∂X.


