Geometric Calculus 1, 201.1.1031
 Homework 3
 Fall 2019 (D.Kerner)

(1) Check the domain/continuity of the function $f(x, y)=\sqrt{y^{2}-4} \cdot \ln \left(5-x^{2}-y^{2}\right)$. Draw the level curve at the height 0 . Check the existence of the limits: i. $\lim _{(x, y) \rightarrow(0,-2)} f(x, y) \quad$ ii. $\lim _{(x, y) \rightarrow(0, \sqrt{5})} f(x, y) \quad$ iii. $\lim _{(x, y) \rightarrow(1,2)} f(x, y)$.
(2) Define $\mathbb{R}^{2} \xrightarrow{f} \mathbb{R}$ by $f(x, y)=\frac{\left(x^{2}+y^{4}\right)^{3}}{1+x^{6} y^{4}}$. Prove: $\lim _{|x| \rightarrow \infty} f(x, k \cdot x)=\infty$, for any $k \in \mathbb{R}$. Does $\lim _{|(x, y)| \rightarrow \infty} f(x, y)$ exist?
(3) In the following cases the domain of definition is not a closed subset of \mathbb{R}^{n}. To which maximal domain can you extend the function in a continuous way?
i. $f(x, y)=x \cdot \ln \left(x^{2}+3 y^{2}\right)$
ii. $f(x, y)=y \cdot \sin \frac{1}{x}$
iii. $f(x, y)=\frac{x^{2} y}{x^{4}+y^{2}}$
iv. $f(x, y, z)=\frac{\sin (x+y+z)-\sin (x+y-z)}{z}$.
(4) (a) Compute the repeated limit: $\lim _{m \rightarrow \infty}\left(\lim _{n \rightarrow \infty} \cos ^{n}(\pi \cdot m!\cdot x)\right)$. Does the double limit $\lim _{m, n \rightarrow \infty} \cos ^{n}(\pi \cdot m!\cdot x)$ exist?
(b) Denote the coordinates in $\mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{y}}$ by $(\underline{x}, \underline{y})$ and consider a function $\mathbb{R}^{n_{x}+n_{y}} \xrightarrow{f} \mathbb{R}$. Suppose there exists $\lim _{(\underline{x}, \underline{y}) \rightarrow\left(\underline{x}_{0}, \underline{y}_{0}\right)} f(\underline{x}, \underline{y})$. Suppose for some $\epsilon>0$ holds: for any $\left(\underline{x}, \underline{y}_{0}\right) \in \operatorname{Ball} l_{\epsilon}\left(\underline{x}_{0}, \underline{y}_{0}\right)$ exists $\lim _{\underline{y}_{\rightarrow} \underline{y}_{0}} f(\underline{x}, \underline{y})$. Prove: $\lim _{\underline{y}) \rightarrow\left(\underline{x}_{0}, \underline{y}_{0}\right)} f(\underline{x}, \underline{y})=\lim _{\underline{x} \rightarrow \underline{x}_{0}}\left(\lim _{\underline{y} \rightarrow \underline{y}_{0}} f(\underline{x}, \underline{y})\right)$.
(5) (a) A sequence of points $\left\{\underline{x}_{k}\right\}$ in \mathbb{R}^{n} is called a Cauchy sequence if for any ϵ exists N such that $\left\|\underline{x}_{k}-\underline{x}_{k^{\prime}}\right\|<\epsilon$ for any $k, k^{\prime}>N$. Prove: any Cauchy sequence in \mathbb{R}^{n} converges.
(b) Take a sequence of non-empty compact sets, $K_{1} \supseteq K_{2} \supseteq \cdots$. Prove: $\cap K_{i} \neq \varnothing$. (Does this hold for closed sets? For open sets?)
(c) Suppose $S \subset \mathbb{R}^{n}$ is non-compact. Show that there exists an unbounded continuous function on S.
(d) Prove: a closed subset of a compact set is compact.
(e) Suppose a function $S_{1} \xrightarrow{f} S_{2}$ is continuous, bijective and S_{1} is compact. Prove: f^{-1} is also continuous. What can happen when S_{1} is non-compact?
(6) Define the distance between the subsets $S_{1}, S_{2} \subset \mathbb{R}^{n}$ by $d\left(S_{1}, S_{2}\right):=\inf \left\{d\left(s_{1}, s_{2}\right) \mid s_{i} \in S_{i}\right)$. Prove:
(a) $d(p t, S)=0$ iff $p t \in \bar{S}$. (Give an example with $p t \notin S$.)
(b) If S is closed then there exists $s \in S$ such that $d(p t, S)=d(p t, s)$. (What can happen if S is not closed?)
(c) If $S_{1}, S_{2} \subset \mathbb{R}^{n}$ are bounded then $d\left(S_{1}, S_{2}\right)=0$ iff $\overline{S_{1}} \cap \overline{S_{2}} \neq \varnothing$. (Give an example of bounded sets with $S_{1} \cap S_{2}=\varnothing$ but $d\left(S_{1}, S_{2}\right)=0$. Given an example of unbounded sets with $\overline{S_{1}} \cap \overline{S_{2}}=\varnothing$ but $d\left(S_{1}, S_{2}\right)=0$.)
(d) If S_{1}, S_{2} are compact then exist $s_{1} \in S_{1}, s_{2} \in S_{2}$ such that $d\left(s_{1}, s_{2}\right)=d\left(S_{1}, S_{2}\right)$.
(e) Suppose for $S_{1}, S_{2} \subset \mathbb{R}^{n}$ holds: $d\left(S_{1}, S_{2}\right)>0$. Then there exists a continuous function $\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}$ such that $\left.f\right|_{S_{1}}=0$ and $\left.f\right|_{S_{2}}=1$. (For example, one can define $f(x):=2 \frac{d\left(x, S_{1}\right)}{d\left(S_{1}, S_{2}\right)}$, if $d\left(x, S_{1}\right) \leq \frac{d\left(S_{1}, S_{2}\right)}{2}$, and $f(x)=1$ otherwise. Check the continuity.)
This is a very strong separation property. You will see more of this kind in the course "Introduction to Topology". Conclude: for any compact sets with $\overline{S_{1}} \cap \overline{S_{2}}=\varnothing$ there exist open neighborhoods, $S_{i} \subset \mathcal{U}_{i} \subset \mathbb{R}^{n}$ such that $d\left(\mathcal{U}_{1}, \mathcal{U}_{2}\right)>0$. (In particular, $\overline{\mathcal{U}_{1}} \cap \overline{\mathcal{U}_{2}}=\varnothing$.)
(7) (a) Which of the following sets (defined by parametrization) are path-connected?
i. $\left\{\left.\left(\frac{1}{t^{2}}, \frac{1}{t^{3}}\right) \right\rvert\, t \in(1, \infty)\right\} \coprod\{0,0\} \quad$ ii. $\left\{\left.r=\frac{1}{1+\phi} \right\rvert\, \phi \in[1, \infty)\right\} \coprod\{(0,0)\}\left(r, \phi\right.$ are the polar coordinates in $\left.\mathbb{R}^{2}\right)$.
(b) Suppose the subsets $\left\{X_{\alpha}\right\}$ of \mathbb{R}^{n} are path-connected, and $\cap X_{\alpha} \neq \varnothing$. Prove: $\cup X_{\alpha}$ is path-connected. (Here the collection is not necessariy finite)
(c) Let $\left\{X_{i}\right\}$ be a finite collection of path-connected sets. Prove: ΠX_{i} is path-connected.
(d) Prove: path-connectedness is preserved under linear transformations and shifts of \mathbb{R}^{n}.
(e) Prove: $S^{n-1}:=\{\underline{x}| | \underline{x} \mid=r\} \subset \mathbb{R}^{n>1}$ is path connected. Do this in as many ways as you can, e.g.: by considering the polar coordinates in \mathbb{R}^{n}; by presenting S^{n-1} as the union of two graphs of continuous functions; by intersecting S^{n-1} with a hyperplane.
(f) Let $X \subset \mathbb{R}^{n}$ and suppose $a \in \operatorname{int}(X), b \in \operatorname{int}\left(\mathbb{R}^{n} \backslash \bar{X}\right)$. Prove: any path from a to b intersects ∂X.

