Geometric Calculus 1, 201.1.1031

Homework 4

Fall 2019 (D.Kerner)

- (1) Check the path-connectedness of the sets:
- i. $\{\sum \lambda_i x_i^{n_i} = 1\} \subset \mathbb{R}^n \text{ (here } \{\lambda_i \in \mathbb{R}\} \text{ and } \{n_i \in \mathbb{N}\} \text{ are fixed)}$ ii. $\{x_1(\sin(x_2^3 x_3^2) x_4^4) = 1\} \subset \mathbb{R}^4$
- (2) Using the standard inner product on $Mat_{m \times n}(\mathbb{R})$, $\langle A, B \rangle = trace(A \cdot B^t)$, we identify $Mat_{m \times n}(\mathbb{R})$ with \mathbb{R}^{mn} . Thus we can define open/closed balls and open/closed/compact/bounded/path-connected subsets of $Mat_{m \times n}(\mathbb{R})$.
 - (a) Describe (as explicitly as possible) $Ball_r(0)$ and the standard sphere of radius 1 in $Mat_{2\times 2}(\mathbb{R})$.
 - (b) Prove that the trace and the determinant are continuous functions, $Mat_{n \times n}(\mathbb{R}) \to \mathbb{R}$.
 - (c) More generally, prove that all the coefficients of the characteristic polynomial of A depend continuously on A.
 - (d) Consider the matrix product, $Mat_{m \times n}(\mathbb{R}) \times Mat_{n \times k}(\mathbb{R}) \to Mat_{m \times k}(\mathbb{R}), (A, B) \to A \cdot B$. Prove: this is a continuous function. Prove: the inverse of a matrix, $GL(n, \mathbb{R}) \to GL(n, \mathbb{R})$, $A \to A^{-1}$, is a continuous function.
 - (e) Let $SL(n, \mathbb{R}) := \{A \mid det(A) = 1\},\$ $O(n,\mathbb{R}) := \{A \mid A \cdot A^t = \mathbb{I}\}, \qquad SO(n,\mathbb{R}) = O(n,\mathbb{R}) \cap SL(n,\mathbb{R}).$ Prove: $O(n,\mathbb{R})$ sits inside the sphere of radius \sqrt{n} centered at $\mathbb{O} \in Mat_{n \times n}(\mathbb{R})$. Is $SL(n,\mathbb{R})$ bounded? Which of the sets $GL(n,\mathbb{R})$, $SL(n,\mathbb{R})$, $O(n,\mathbb{R})$, $SO(n,\mathbb{R})$ are open/closed/compact?
 - (f) Prove: $O(n, \mathbb{R})$ is not path-connected. Is $GL(n, \mathbb{R})$ path-connected?
 - (g) Let $X_{diag} \subset Mat_{n \times n}(\mathbb{R})$ be the subset of all the matrices that are diagonalizable over \mathbb{C} . (i.e. $U \cdot A \cdot U^{-1}$ is diagonal for some $U \in GL(n,\mathbb{C})$ Prove: any matrix whose eigenvalues are pairwise distinct complex numbers belongs to $int(X_{diag})$.
 - (h) Conclude: $\overline{X_{diag}} = Mat_{n \times n}(\mathbb{R})$ and $int(Mat_{n \times n}(\mathbb{R}) \setminus X_{diag}) = \emptyset$. (Because of this many engineers claim "Any matrix in real life is diagonalizable".)
 - (i) Is $Mat_{n \times n}(\mathbb{R}) \setminus X_{diag}$ a closed subset of $Mat_{n \times n}(\mathbb{R})$? (Hint: look at $Mat_{2 \times 2}(\mathbb{R})$)
- (3) Define the polar coordinates in \mathbb{R}^n by $r = \sqrt{\sum x_i^2}$, $\left\{\phi_j = \arccos \frac{x_j}{\sqrt{\sum_{i=1}^j x_i^2}} \in [0, \pi]\right\}_{j=3,...,n}$, while $\phi_2 \in [0, 2\pi)$ is determined by $\phi_2 = \arccos \frac{x_1}{\sqrt{x_1^2 + x_2^2}} = \arcsin \frac{x_2}{\sqrt{x_1^2 + x_2^2}}$.
 - (a) Verify that for n = 2, 3 we get the ordinary polar coordinates in \mathbb{R}^2 , \mathbb{R}^3 . Why do we need two expressions for the angle ϕ_2 ?
 - (b) Give the geometric definition of all the angles ϕ_i , j = 2, ..., n.
 - (c) Write the explicit formulas for the map $(r, \phi) \rightarrow \underline{x}$.
 - (d) Verify that the domain of the coordinate change $\underline{x} \to (r, \phi)$ is $\mathbb{R}^n \setminus \{x_1^2 + x_2^2 = 0\}$ while it image is $\mathbb{R}_{>0} \times$ $(0,\pi)^{n-2} \times [0,2\pi).$
 - (e) Verify that the map $\mathbb{R}_{>0} \times (0,\pi)^{n-2} \times [0,2\pi) \ni (r,\underline{\phi}) \to \underline{x} \in \mathbb{R}^n \setminus \{x_1^2 + x_2^2 = 0\}$ is continuous and bijective. Is its inverse continuous?
 - (f) Using polar coordinates prove (again) that the sphere $S^{n-1} \subset \mathbb{R}^n$ is compact and path-connected.
- (4) (a) We have defined the norms $||*||_p$ on \mathbb{R}^n , for $1 \le p \le \infty$. Verify that these are indeed norms. Draw $Ball_1^{||*||_p}(0) \subset \mathbb{R}^2$. (b) Prove: $\lim_{n \to \infty} ||x||_p = ||x||_\infty$ for any $x \in \mathbb{R}^n$.

(c) Let C[a, b] be the space of functions continuous on $[a, b] \subset \mathbb{R}^1$. Prove that $||f||_p := \sqrt[p]{\int_a^b |f(x)|^p dx}$ defines a norm on C[a, b], for any $1 \le p \le \infty$. (Hint: Hölder and Minkowski)

- (d) Prove: $\lim_{p \to \infty} ||f||_p = ||f||_{\infty}$ for any $f \in C[a, b]$.
- (e) Let $||*||_1$, $||*||_2$ be two equivalent norms on a vector space $V_{\mathbb{R}}$ (not necessarily of finite dimension). Prove: (i) $S \subseteq V$ is open/closed/compact/path-connected w.r.t. $||*||_1$ iff it is w.r.t. $||*||_2$. (ii) $int^{||*||_1}S = int^{||*||_2}S$, $\overline{S}^{||*||_1} = \overline{S}^{||*||_2}$. (The interior and the closure w.r.t. these norms)

 - (iii) $V \supseteq \mathscr{D}_f \xrightarrow{f} \mathbb{R}^m$ is $||*||_1$ -continuous iff it is $||*||_2$ -continuous.
- (iv) $(V, ||*||_1)$ is complete iff $(V, ||*||_2)$ is complete. ((V, ||*||)) is complete if every Cauchy sequence converges)
- (f) We have skipped some steps in the proof of "All the norms are equivalent on \mathbb{R}^{n} ". Fill in all the details.