Geometric Calculus 1, 201.1.1031 Homework 5
 Fall 2019 (D.Kerner)

(1) (a) Give an example of a non-complete metric space and a contractive map without base points.
(b) Can the assumption on the contraction map in the fixed point theorem be weakened to $d(f(x), f(y))<d(x, y) ?$
(2) (a) The following functions are not defined on the whole \mathbb{R}^{2}. To which domain can they be extended in a $C^{0} /$ differentiable/ C^{1}-way?
i. $\quad f(x, y)=\frac{x y^{2}}{x^{2}+y^{2}}$
ii. $f(x, y)=\frac{\ln \left|\frac{x}{y}\right|}{x-y}$
iii. $f(x, y)=x \cdot \sin \left(\frac{y}{\sqrt{|x|}}\right)$.
(b) Compute f^{\prime} in the following cases: i. $\mathbb{R}^{3} \times \mathbb{R}^{3} \xrightarrow{f} \mathbb{R}^{3}, f(\vec{v}, \vec{u})=\vec{v} \times \vec{u}$ (vector product)
ii. The transition to the polar coordinates in \mathbb{R}^{2} (and the inverse transition).
iii. $\mathbb{R}^{2} \xrightarrow{f} \mathbb{R}^{2}, f=\underbrace{g \circ g \circ \ldots \circ g}_{n \text { times }}$, where $g(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$, compute at the point $(1,0)$.
iv. $\mathbb{R}^{n} \times \mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{n}, f(\vec{v}, \vec{u})=\vec{v}+\vec{u}$. v. $\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{1}, f(\underline{x})=\underline{x} \cdot A \cdot \underline{x} t$, for some $A^{t}=A \in M a t_{n \times n}(\mathbb{R})$.
vi. $\operatorname{Mat}_{n \times n}(\mathbb{R}) \ni X \rightarrow X \cdot A \cdot X \in M a t_{n \times n}(\mathbb{R})$, for a fixed $\bar{A} \in M a t_{n \times n}(\mathbb{R})$
(c) Suppose $\mathbb{R}^{n} \supseteq \mathscr{D} \xrightarrow{f, g} \mathbb{R}^{1}$ are differentiable. Express $(f \cdot g)^{\prime},\left(\frac{f}{g}\right)^{\prime}$ via f^{\prime}, g^{\prime}.
(d) Prove: any function $\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{m}$ that satisfies $|f(\underline{x})| \leq|\underline{x}|^{1+\epsilon}$, for some $\epsilon>0$, in $\operatorname{Ball}_{\delta}(0)$, is differentiable at 0 .
(e) Suppose $\mathbb{R}^{n} \supseteq \mathscr{D}_{f} \xrightarrow{f} \mathbb{R}^{n}$ is invertible and both f, f^{-1} are differentiable. Prove: $\left.\left.f^{\prime}\right|_{\underline{x}_{0}} \cdot\left(f^{-1}\right)^{\prime}\right|_{f\left(\underline{x}_{0}\right)}=\mathbb{I}$.
(f) We have proved that C^{1} implies differentiability for $n=2$. Extend this to the general case.
(3) (a) Suppose $\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{1}$ is differentiable and homogeneous of order p, i.e. $f(t \cdot \underline{x})=t^{p} \cdot f(\underline{x})$ for any $t \in \mathbb{R}$. Prove: $\sum x_{i} \partial_{i} f=p \cdot f$.
(b) Find all the points of \mathbb{R}^{n} at which the directional derivative of $f(\underline{x})=\sum_{j=1}^{n} \sin ^{2}\left(x_{j}+a_{j}\right)$ in the direction $(1,2, \ldots, n)$ achieves its maximum. (Here $\left\{a_{j}\right\}$ are constants.)
(c) Compute the directional derivative of $f(x, y)=\left\{\begin{array}{c}\frac{y^{2}}{x}, x \neq 0 \\ 0, x=0\end{array}\right.$ at $(0,0)$ in the direction $\vec{v} \in \mathbb{R}^{2}$. (What would you expect when presenting this function as $r \cdot \frac{\sin ^{2}(\theta)}{\cos (\theta)}$?)
(4) (a) An inkspot moves along the surface $\left\{z=a x^{2}+b y^{2}\right\} \subset \mathbb{R}^{3}, a, b>0$. At each moment the velocity of the inkspot is in the direction of the steepest descent. Find the equation of the path.
(b) A point moves along the standard sphere $S^{n-1} \subset \mathbb{R}^{n}$, and its coordinates, $\mathbb{R}^{1} \xrightarrow{\underline{x(t)}} S^{n-1}$, depend differentiably on time. Prove: at each moment the velocity of the point, $\frac{d x(t)}{d t}$, is orthogonal to the vector $\underline{x}(t)$. Prove: the acceleration, $\frac{d^{2} x}{d t^{2}}$, points into $\operatorname{Ball}_{1}(0)$. (wiki: Centrifugal Force)
(5) (a) Suppose $\mathcal{U} \subset \mathbb{R}^{n}$ is open and path-connected. Prove: for any two points of \mathcal{U} there exists a path $[0,1] \xrightarrow{x(t)} \mathcal{U}$, such that $\underline{x}(t)$ is injective (i.e. the path is non-self-intersecting), differentiable, and $\frac{d x}{d t} \neq 0$ for $t \in(0,1)$.
(b) Let $\mathscr{D}_{f} \xrightarrow{f} \mathbb{R}^{m}$ be differentiable, with $\mathscr{D}_{f} \subset \mathbb{R}^{n}$ open and path-connected. (Dis)prove: $f=$ const iff $f^{\prime}=0$ on \mathscr{D}_{f}.

