Geometric Calculus 1, 201.1.1031 Homework 6
 Fall 2019 (D.Kerner)

(1) (a) Let $S^{1} \times S^{1}=\left\{\underline{x} \mid x_{1}^{2}+x_{2}^{2}=1=x_{3}^{2}+x_{4}^{2}\right\} \subset \mathbb{R}^{4}$. Find the equations for the tangent plane to this subset at a point \underline{x}_{0}. (e.g. for $x_{2,0}, x_{4,0}>0$ present $S^{1} \times S^{1}$ as the graph of a function.) Check that none of these planes intersects the subset $\left(\operatorname{Ball}_{1}(0,0) \times \mathbb{R}^{2}\right) \cup\left(\mathbb{R}^{2} \times \operatorname{Ball}_{1}(0,0)\right)$.
(b) Let $\mathbb{R}^{n} \supseteq \mathscr{D}_{f} \xrightarrow{f} \mathbb{R}^{1}$ be differentiable. Fix a plane, $L \subset \mathbb{R}^{n}$. Verify: $T \Gamma_{\left.f\right|_{L}}=T \Gamma_{f} \cap\left\{L \times \mathbb{R}^{1}\right\}$.
(c) Take a differentiable function $\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}$ and a point $\left(\underline{x}, x_{n+1}\right) \in \mathbb{R}^{n+1}, f(\underline{x}) \neq x_{n+1}$. Prove:
(i) There exists a point $\underline{\tilde{x}} \in \mathbb{R}^{n}$ such that $\left.d\left(\left(\underline{x}, x_{n+1}\right), \Gamma_{f}\right)\right)=d\left(\left(\underline{x}, x_{n+1}\right),(\underline{\tilde{x}}, f(\underline{\tilde{x}}))\right)$.
(ii) The line $\overline{\left(\underline{x}, x_{n+1}\right),(\underline{\tilde{x}}, f(\underline{\tilde{x}}))}$ is orthogonal to the tangent plane to Γ_{f} at $(\underline{\tilde{x}}, f(\underline{\tilde{x}}))$.
(2) (a) $\mathbb{R}^{2} \supseteq \mathscr{D}_{f} \xrightarrow{f} \mathbb{R}$ is called independent of x_{2} if $f\left(x_{1}, x_{2}\right)=g\left(x_{1}\right)$, for some function g of one variable. Prove: if f is C^{1}, and $\partial_{x_{2}} f=0$ on a convex \mathscr{D}_{f}, then f is independent of x_{2}. Show by an example that the convexity of \mathscr{D}_{f} cannot be weakened to path-connectedness.
(b) Let $\mathbb{R}^{2} \supseteq \mathscr{D}_{f} \xrightarrow{f} \mathbb{R}$ be differentiable. Fix pairwise distinct points, $p_{1}, p_{2}, p_{3} \in \mathscr{D}_{f}$. Let L be the (unique) plane through the points $\left(p_{1}, f\left(p_{1}\right)\right),\left(p_{2}, f\left(p_{2}\right)\right),\left(p_{3}, f\left(p_{3}\right)\right)$. (Dis)prove: there exists a plane parallel to L and tangent to Γ_{f}.
(c) Prove: if f is differentiable and $f(0)=0$ then $f(\underline{x})=\sum_{i=1}^{n} x_{i} g_{i}(\underline{x})$, for some continuous functions $\left\{g_{i}\right\} .\left(\right.$ Hint: define $h_{\underline{x}}(t)=f(t \cdot \underline{x})$ and note $\left.f(x)=\int_{0}^{1} h_{\underline{x}}^{\prime}(t) d t.\right)$
(3) A function $\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{r}} \xrightarrow{\phi} \mathbb{R}^{m}$ is called multi-linear if it is linear in each component (i.e. $\phi\left(\underline{a}^{(1)}, \ldots, \underline{a}^{(j-1)}, \underline{x}^{(j)}, \underline{a}^{(j+1)}, \ldots, \underline{a}^{(r)}\right)$ is linear in $\underline{x}^{(j)}$, for each j.)
(a) Check that for $r=2, m=1$ such a function can be presented as $\underline{x}^{(1)} \cdot A \cdot\left(\underline{x}^{(2)}\right)^{t}$, for some $A \in \operatorname{Mat}_{n_{1 \times n_{2}}}(\mathbb{R})$. Generalize this to $r \geq 2, m=1$.
(b) Denote the set of multilinear functions by $\operatorname{Mul}^{r}\left(\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{r}}, \mathbb{R}^{m}\right)$. Prove: this is an \mathbb{R} vector space. Construct the isomorphism of vector spaces: Mul $\left(\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{r}}, \mathbb{R}^{m}\right) \xrightarrow{\sim}$ $\operatorname{Hom}\left(\mathbb{R}^{n_{1}}, \operatorname{Hom}\left(\mathbb{R}^{n_{2}}, \ldots \operatorname{Hom}\left(\mathbb{R}^{n_{r}}, \mathbb{R}^{m}\right) \ldots\right)\right.$. (Therefore r 'th derivative of a function $\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{1}$ is an element of $M u l^{r}\left(\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}, \mathbb{R}^{m}\right)$.)
(c) For any $\phi \in \operatorname{Mul}^{r}\left(\prod^{r} \mathbb{R}^{n}, \mathbb{R}^{m}\right)$ prove: $\lim _{v \rightarrow 0} \frac{\phi(v, \ldots, v)}{|v|^{r-1}}=0$.
(d) Compute $\left.\phi^{\prime}\right|_{0},\left.\phi^{\prime \prime}\right|_{0}, \ldots,\left.\phi^{(r-1)}\right|_{0}$. Compute $\left.\phi^{\prime}\right|_{\left.\underline{x}^{(1)}, \ldots, \underline{x}^{(r)}\right)}\left(\vec{v}^{(1)}, \ldots, \vec{v}^{(r)}\right)$.
(e) Prove: $\phi^{(r+1)}=0$ (at any point). In particular, any multi-linear function is C^{∞}.
(4) (a) Check whether $\left.\partial_{x y}^{2} f\right|_{(0,0)}=\left.\partial_{y x}^{2} f\right|_{(0,0)}$ holds for $f(x, y)=\left\{\begin{array}{l}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}:(x, y) \neq(0,0) \\ 0:(x, y)=(0,0)\end{array}\right.$
(b) We have proved in the class: $\partial_{x_{i} x_{j}}^{2} f=\partial_{x_{j} x_{i}}^{2} f$ for C^{2}-functions. Prove: for C^{k}-functions the derivatives up to order k do not depend on the order of differentiation. (Hint: use the C^{2}-case.)
(c) Expand $\arctan \left(\frac{x+y}{1+x y}\right)$ into Taylor series up to order 3 at $(0,0)$.
(d) Prove: the order- k Taylor polynomial of a C^{k}-function is unique. Namely, if $\lim _{|\underline{x}| \rightarrow 0} \frac{f(\underline{x})-P(x)}{|x|^{k}}=0$ for a polynomial P of degree $\leq k$, then P is unique.

