
Geometric Calculus 1, 201.1.1031

Homework 6
Fall 2019 (D.Kerner)

(1) (a) Let S1 × S1 = {x| x21 + x22 = 1 = x23 + x24} ⊂ R4. Find the equations for the tangent plane to
this subset at a point x0. (e.g. for x2,0, x4,0 > 0 present S1 × S1 as the graph of a function.)

Check that none of these planes intersects the subset
(
Ball1(0, 0)×R2

)
∪
(
R2×Ball1(0, 0)

)
.

(b) Let Rn ⊇ Df
f→ R1 be differentiable. Fix a plane, L ⊂ Rn. Verify: TΓf |L = TΓf ∩ {L× R1}.

(c) Take a differentiable function Rn f→ R and a point (x, xn+1) ∈ Rn+1, f(x) 6= xn+1. Prove:
(i) There exists a point x̃ ∈ Rn such that d

(
(x, xn+1),Γf )

)
= d
(
(x, xn+1), (x̃, f(x̃))

)
.

(ii) The line (x, xn+1), (x̃, f(x̃)) is orthogonal to the tangent plane to Γf at (x̃, f(x̃)).

(2) (a) R2 ⊇ Df
f→ R is called independent of x2 if f(x1, x2) = g(x1), for some function g of one

variable. Prove: if f is C1, and ∂x2f = 0 on a convex Df , then f is independent of x2.
Show by an example that the convexity of Df cannot be weakened to path-connectedness.

(b) Let R2 ⊇ Df
f→ R be differentiable. Fix pairwise distinct points, p1, p2, p3 ∈ Df . Let L be the

(unique) plane through the points (p1, f(p1)), (p2, f(p2)), (p3, f(p3)). (Dis)prove: there exists
a plane parallel to L and tangent to Γf .

(c) Prove: if f is differentiable and f(0) = 0 then f(x) =
n∑
i=1

xigi(x), for some continuous functions

{gi}. (Hint: define hx(t) = f(t · x) and note f(x) =
1∫
0

h′x(t)dt.)

(3) A function Rn1 × · · · × Rnr
φ→ Rm is called multi-linear if it is linear in each component (i.e.

φ(a(1), . . . , a(j−1), x(j), a(j+1), . . . , a(r)) is linear in x(j), for each j.)
(a) Check that for r = 2, m = 1 such a function can be presented as x(1) · A · (x(2))t, for some

A ∈Matn1×n2(R). Generalize this to r ≥ 2, m = 1.
(b) Denote the set of multilinear functions by Mulr(Rn1 × · · · × Rnr ,Rm). Prove: this is an R-

vector space. Construct the isomorphism of vector spaces: Mulr(Rn1 × · · · × Rnr ,Rm) ∼−→
Hom(Rn1 , Hom(Rn2 , . . . Hom(Rnr ,Rm)...). (Therefore r’th derivative of a function Rn f→ R1

is an element of Mulr(Rn × · · · × Rn,Rm).)

(c) For any φ ∈Mulr(
∏r Rn,Rm) prove: lim

v→0

φ(v,...,v)
|v|r−1 = 0.

(d) Compute φ′|0, φ′′|0, . . . , φ(r−1)|0. Compute φ′|(x(1),...,x(r))(~v(1), . . . , ~v(r)).
(e) Prove: φ(r+1) = 0 (at any point). In particular, any multi-linear function is C∞.

(4) (a) Check whether ∂2xyf |(0,0) = ∂2yxf |(0,0) holds for f(x, y) =
{
xy x

2−y2
x2+y2

: (x, y) 6= (0, 0)

0 : (x, y) = (0, 0)
.

(b) We have proved in the class: ∂2xixjf = ∂2xjxif for C2-functions. Prove: for Ck-functions the

derivatives up to order k do not depend on the order of differentiation. (Hint: use the C2-case.)
(c) Expand arctan( x+y

1+xy
) into Taylor series up to order 3 at (0, 0).

(d) Prove: the order-k Taylor polynomial of a Ck-function is unique. Namely, if lim
|x|→0

f(x)−P (x)
|x|k = 0

for a polynomial P of degree ≤ k, then P is unique.


