Geometric Calculus 1, 201.1.1031 Homework 7
 Fall 2019 (D.Kerner)

(1) (a) Denote by Taylor $\underline{x}_{0}[f(\underline{x})]$ the Taylor series of a C^{∞} function f at a point \underline{x}_{0}.
(i) Verify: $\sum a_{\underline{m}} \underline{x}^{\underline{m}}$ is the Taylor series of f iff $f(\underline{x})-\sum a_{\underline{m}} \underline{x}^{\underline{m}} \in o\left(\left\|\underline{x}-\underline{x}_{0}\right\|^{p}\right)$ for any $p \in \mathbb{N}$.
(ii) Relate Taylor $\underline{\underline{x}}_{0}[f(\underline{x}) \cdot g(\underline{x})]$ to $\operatorname{Taylor}_{\underline{x}_{0}}[f(\underline{x})]$, $\operatorname{Taylor}_{\underline{x}_{0}}[g(\underline{x})]$. (No need to write the series in the explicit form.)
(iii) Relate Taylor ${\underline{x_{0}}}[f(g(\underline{x}))]$ to Taylor $_{g\left(\underline{x}_{0}\right)}[f(\underline{y})]$, Taylor $_{\underline{x}_{0}}[g(\underline{x})]$.
(iv) Expand $f(x, y)=\tan \left(e^{x^{2}-y^{3}}-e^{y^{3}-x^{2}}\right)$ up to order 5, i.e. up to $O\left(x^{6}, x^{5} y, \ldots, y^{6}\right)$.
(b) Verify: $f^{\prime}{\underline{x_{0}}}(\vec{v})=\left.\left(\sum v_{i} \partial_{i}\right) f\right|_{\underline{x}_{0}}$. By repeated differentiation verify: $f^{(k)}{\underline{x_{0}}}(\vec{v}, \vec{v}, \ldots, \vec{v})=\left(\sum v_{i} \partial_{i}\right)^{k} f \underline{\underline{x}}_{0}$.
(c) Suppose all the derivatives of a C^{∞} function f on $\operatorname{Ball}_{r}\left(\underline{x}_{0}\right)$ are bounded: $\left|f^{(k)}\right|_{c}(\vec{v}, \vec{v}, \ldots, \vec{v}) \mid \leq$ $\frac{C \cdot k!}{r^{k}} \cdot\|\vec{v}\|^{k}$, for some $C \in \mathbb{R}$ and any $c \in \operatorname{Ball}_{r}\left(\underline{x}_{0}\right), \vec{v} \in \mathbb{R}^{n}$. Prove: the series Taylor $\underline{\underline{x}}_{0}[f]$ converges absolutely to the function f on $\operatorname{Ball}_{r}\left(\underline{x}_{0}\right)$. (A function that coincides with its Taylor series is called "real analytic".)
(2) (a) Find and classify the extrema of the following functions: i. $f(x, y)=e^{\sin (x) \sin (y)}$ ii. $f(x, y, z)=x y+y z+x z \quad$ iii. $f(\underline{x})=\underline{x} \cdot A \cdot \underline{x}^{t}$, here $A=A^{t} \in M a t_{n \times n}(\mathbb{R})$.
(b) Prove Rolle's theorem: if $\mathscr{D}_{f} \xrightarrow{f} \mathbb{R}^{n}$ is continuous on a compact set \mathscr{D}_{f}, is differentiable in the interior $\operatorname{Int}\left(\mathscr{D}_{f}\right)$, and satisfies $\left.f\right|_{\partial \mathscr{D}_{f}}=$ const, then $\left.f^{\prime}\right|_{c}=0$ for some $c \in \operatorname{Int}\left(\mathscr{D}_{f}\right)$.
(c) Solve question 1.c.ii from homework 6 using the necessary criterion for critical points.
(d) Given the points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right) \in \mathbb{R}^{2}$ define the "total error", $\sigma(a, b):=\sum\left(y_{i}-a x_{i}-b\right)^{2}$. Prove: σ achieves its absolute minimum for (a, b) satisfying: $\left[\begin{array}{ll}\sum x_{i}^{2} & \sum x_{i} \\ \sum x_{i} & N\end{array}\right] \cdot\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}\sum x_{i} y_{i} \\ \sum y_{i}\end{array}\right]$.
(3) (Dis)prove the following statements. (The hints are on the next page.)
(a) If $\mathbb{R}^{2} \xrightarrow{f} \mathbb{R}$ has a unique critical point, which is a local minimum, then f is bounded from below.
(b) If $\mathbb{R}^{2} \xrightarrow{f} \mathbb{R}$ has an infinite number of local maxima then it has at least one local minimum.
(c) Given a polynomial $\mathbb{R}^{2} \xrightarrow{p} \mathbb{R}$, whose restriction to each line through the origin, $\left.p\right|_{L}$, has a local minimum at 0 . Then p has a local minimum at $(0,0)$.
(4) (a) We have defined the notion of $\min / \mathrm{max} / \mathrm{saddle}$ of $\mathscr{D}_{f} \xrightarrow{f} \mathbb{R}$ without fixing the coordinates. Check that the conditions " $\left.\operatorname{grad}(f)\right|_{\underline{x}_{0}}=0,\left.\quad f^{\prime \prime}\right|_{\underline{x}_{0}}$ is positive/negative definite" are preserved under C^{2} local coordinate changes.
(b) Find and classify the critical points of $f(x, y)=\ln \left(\arctan \frac{y}{x}\right) \cdot \sin \left(\sqrt{x^{2}+y^{2}}\right)$.
(c) Identify the space of symmetric matrices, $M a t_{n \times n}^{s y m}(\mathbb{R})$, with $\mathbb{R}^{\binom{n+1}{2}}$. The ordinary norm of $\mathbb{R}^{\binom{n+1}{2}}$ induces the norm on $M a t_{n \times n}^{s y m}(\mathbb{R})$. Prove: the subsets of positive/negative definite matrices are open. Thus being positive/negative definite is stable under small perturbations.
(5) (a) Fix some points $\underline{x}^{(1)}, \underline{x}^{(2)}, \underline{x}^{(3)}$ in \mathbb{R}^{n}. Take the sum of distances to a given point, $f(\underline{x})=$ $\sum_{i=1}^{3}\left\|\underline{x}-\underline{x}^{(i)}\right\|$. (Dis)Prove: the absolute minimum of this function is obtained at a point where the angles between the lines $\left\{\underline{\underline{x}, \underline{x}^{(i)}}\right\}_{i}$ are all 120°.
(b) Define the map $\mathbb{R}_{\phi, \psi}^{2} \xrightarrow{f} \mathbb{R}_{x y z}^{3}$ by $f_{x}(\phi, \theta)=(R+r \sin (\phi)) \cos (\theta), f_{y}(\phi, \theta)=(R+r \sin (\phi)) \sin (\theta)$, $f_{z}(\phi, \theta)=r \cos (\phi)$.
(i) Find and classify the critical points of f_{x}.
(ii) Identify the image $\underline{f}\left(\mathbb{R}^{2}\right) \subset \mathbb{R}^{3}$. (Seen hwk.0) Explain geometrically the results of (a).

Hints to question 3:

$$
f(x, y)=x^{2}+y^{2}(1-x)^{3} \quad f(x, y)=\left(1+e^{y}\right) \cos (x)-y e^{y} \quad f(x, y)=\left(y-x^{2}\right)\left(y-3 x^{2}\right)
$$

