Geometric Calculus 1, 201.1.1031

Homework 8

Fall 2019 (D.Kerner)

The hints to some questions are at the next page.

- (1) (a) Define x(t) = ln(t) + sin(t), $y(t) = arctan(t) e^t$. Compute $\frac{d^2y}{dx^2}|_{t=1}$. (b) z(x,y) is C^1 , defined by $e^z + zy + xy = 1$, with z(0,0) = 0. Find/classify its critical points.
 - (c) Find/classify the critical points of y(x), defined by $ln\sqrt{x^2+y^2} = \arctan \frac{y}{x}$, for $y \neq x$.
 - (d) Suppose $\mathbb{R}^n \supseteq \mathscr{D}_f \xrightarrow{f} \mathbb{R}^n$ is C^1 . Suppose the equation $f(\underline{x}) = \underline{y}_0$ has k solutions, $\underline{x}^{(1)}, \dots, \underline{x}^{(k)}$ and they satisfy $\{det[f'|_{\underline{x}^{(i)}}] \neq 0\}_i$. Prove: for some $\delta > 0$ and any $\underline{y} \in Ball_{\delta}(\underline{y}_0)$ the equation $f(\underline{x}) = y$ has at least k solutions.
 - (e) Let $f(\underline{x}) = 0$ be a C^{∞} -equation, and assume for each solving point, $f(\underline{x}_0) = 0$, holds: $f'|_{\underline{x}_0} = 0$. Does this imply that the equation cannot be resolved by a C^1 -function?
 - (f) Can the C^1 -assumption of Implicit Function Theorem be weakened to " $F(\underline{x}, y)$ is differentiable"?
- (2) (a) Find the tangent plane to the standard sphere $S^{n-1} \subset \mathbb{R}^n$.
 - (b) Prove: grad(f) is orthogonal to the level curve $\{f(x,y) = c\} \subset \mathbb{R}^2$, for $f C^1$, at all the (c) Suppose a level curve of f(x, y) is defined by y² = x². Prove: grad(f)|_{0,0} = 0.

 - (Note: this does not imply $f(x, y) = y^2 x^2$, e.g. all $f(x) = x^n$ have the same zero level set) (d) In the following cases find the (non)smooth points:
 - i. $\{(x, y, z) | (x^2 + y^2 + z^2)^{17} = \frac{z^3}{(x^2 + y^2)^8} \}$ ii. $\{\underline{x} | ||L(\underline{x})|| = 1\} \subset \mathbb{R}^n \text{ for } L \in Hom(\mathbb{R}^n, \mathbb{R}^m).$ iii. $\{(x,y) \mid y^2 = \prod_{i=1}^d (x-\alpha_i)^2\}$. Sketch this curve in small neighborhoods of non-smooth points.
 - (e) Verify: the definition of smoothness of the hypersurface at a point $p \in \{f(\underline{x}) = 0\}$ does not depend on the choice of the local coordinates.
- (3) The angle of intersection of two hypersurfaces, $X_f = \{f(\underline{x}) = 0\}, X_g = \{g(\underline{x}) = 0\}$, at a smooth point $p \in X_f \cap X_g \subset \mathbb{R}^n$, is the angle between the corresponding normals.
 - (a) Express the angle of intersection of $\partial Ball_r(\underline{a})$, $\partial Ball_R(\underline{b})$ at \underline{p} via the vectors $\underline{a} \underline{p}$, $\underline{b} \underline{p}$.
 - (b) Express the angle of intersection of X_f , X_g at p via $f'|_p$, $g'|_p$.
 - (c) Verify: the angle of intersection of X_f, X_g is preserved under shifts/orthogonal transformations.
 - (d) Let $f(\underline{x}) = \sum x_i^{2a}$ and $g(\underline{x}) = f(\underline{x}) + p_{\leq 2a}(\underline{x})$, where $a \in \mathbb{N}$ and $p_{\leq 2a}$ is a polynomial of degree < 2a. Prove: "the graphs are tangent at ∞ ". Namely: if $\mathcal{N}_{(f,\underline{x})}$, $\mathcal{N}_{(g,\underline{x})}$ are the normals to the graphs at a points $\underline{x} \in \Gamma_f \cap \Gamma_g$, then the angle between $\mathcal{N}_{(f,\underline{x})}$, $\mathcal{N}_{(g,\underline{x})}$ goes to 0 as $|\underline{x}| \to \infty$.
- (4) (a) Let f(t) be C^1 . Suppose z(x, y) satisfies the equations $ln(z) + x \cdot cos(t) + y \cdot sin(t) = f(t)$, $-x \cdot sin(t) + y \cdot cos(t) = f'(t)$, and $x \cdot cos(t) + y \cdot sin(t) + f''(t) \neq 0$. Prove: $(\partial_x z)^2 + (\partial_y z)^2 = z^2$. (b) Verify that the system $x = s^p + t^p$, $y = s^{p+1} + t^{p+1}$, $z = s^{p+2} + t^{p+2}$ defines the real-analytic
 - function z(x, y) (for which values of s, t?) Compute $\partial_x z, \partial_y z$.
 - (c) Consider the map $\mathbb{C} \ni z \to exp(z) \in \mathbb{C}$. Identify $\mathbb{C} \cong \mathbb{R}^2$, by $z \to (Re(z), Im(z))$, and denote by $\mathbb{R}^2 \xrightarrow{[exp]_{\mathbb{R}}} \mathbb{R}^2$ the corresponding real function. Prove: this function is C^w -invertible locally at each point of \mathbb{R}^2 . Is this function globally invertible?
 - (d) Let $\mathbb{R}^1 \xrightarrow{f} \mathbb{R}^1$ be C^k , with $|f'| < 1, 1 \le k \le \infty$. Prove that the map $\mathbb{R}^2 \ni (x, y) \to (x + f(y), y + f(x)) \in \mathbb{R}^2$ is globally(!) C^k -invertible.
 - (e) Give an example of a function $\mathbb{R} \xrightarrow{f} \mathbb{R}$ such that $f'|_0 = 0$, but f is C⁰-globally invertible.
 - (f) Prove: if $\mathbb{R} \xrightarrow{f} \mathbb{R}$ is C^1 and $f'|_0 = 0$ then f is not C^1 -locally invertible at x = 0.

Hint to q.1.f: $f(x, y) = (x - y)^2$.) Hint to q.1.g: $f(x) = \begin{cases} \frac{x}{2} + x^2 \sin \frac{1}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$.