Geometric Calculus 1, 201.1.1031
 Homework 8
 Fall 2019 (D.Kerner)

The hints to some questions are at the next page.
(a) Define $x(t)=\ln (t)+\sin (t), \quad y(t)=\arctan (t)-e^{t}$. Compute $\left.\frac{d^{2} y}{d x^{2}}\right|_{t=1}$.
(b) $z(x, y)$ is C^{1}, defined by $e^{z}+z y+x y=1$, with $z(0,0)=0$. Find/classify its critical points.
(c) Find/classify the critical points of $y(x)$, defined by $\ln \sqrt{x^{2}+y^{2}}=\arctan \frac{y}{x}$, for $y \neq x$.
(d) Suppose $\mathbb{R}^{n} \supseteq \mathscr{D}_{f} \xrightarrow{f} \mathbb{R}^{n}$ is C^{1}. Suppose the equation $f(\underline{x})=\underline{y}_{0}$ has k solutions, $\underline{x}^{(1)}, \ldots, \underline{x}^{(k)}$ and they satisfy $\left\{\operatorname{det}\left[f^{\prime}{\left.\underline{x^{(}}\right)}{ }^{(i)} \neq 0\right\}_{i}\right.$. Prove: for some $\delta>0$ and any $\underline{y} \in \operatorname{Ball}_{\delta}\left(\underline{y}_{0}\right)$ the equation $f(\underline{x})=\underline{y}$ has at least k solutions.
(e) Let $f(\underline{x})=0$ be a C^{∞}-equation, and assume for each solving point, $f\left(\underline{x}_{0}\right)=0$, holds: $f^{\prime} \mid \underline{x}_{0}=0$. Does this imply that the equation cannot be resolved by a C^{1}-function?
(f) Can the C^{1}-assumption of Implicit Function Theorem be weakened to " $F(\underline{x}, y)$ is differentable"?
(2) (a) Find the tangent plane to the standard sphere $S^{n-1} \subset \mathbb{R}^{n}$.
(b) Prove: $\operatorname{grad}(f)$ is orthogonal to the level curve $\{f(x, y)=c\} \subset \mathbb{R}^{2}$, for $f-C^{1}$, at all the smooth points of the curve. (Where $\left.\operatorname{grad}(f)\right|_{p} \neq 0$.)
(c) Suppose a level curve of $f(x, y)$ is defined by $y^{2}=x^{2}$. Prove: $\left.\operatorname{grad}(f)\right|_{0,0}=0$.
(Note: this does not imply $f(x, y)=y^{2}-x^{2}$, e.g. all $f(x)=x^{n}$ have the same zero level set)
(d) In the following cases find the (non)smooth points:
i. $\left\{(x, y, z) \left\lvert\,\left(x^{2}+y^{2}+z^{2}\right)^{17}=\frac{z^{3}}{\left(x^{2}+y^{2}\right)^{8}}\right.\right\} \quad$ ii. $\quad\{\underline{x} \mid\|L(\underline{x})\|=1\} \subset \mathbb{R}^{n}$ for $L \in \operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$. iii. $\left\{(x, y) \mid y^{2}=\prod_{i=1}^{d}\left(x-\alpha_{i}\right)^{2}\right\}$. Sketch this curve in small neighborhoods of non-smooth points.
(e) Verify: the definition of smoothness of the hypersurface at a point $p \in\{f(\underline{x})=0\}$ does not depend on the choice of the local coordinates.
(3) The angle of intersection of two hypersurfaces, $X_{f}=\{f(\underline{x})=0\}, X_{g}=\{g(\underline{x})=0\}$, at a smooth point $p \in X_{f} \cap X_{g} \subset \mathbb{R}^{n}$, is the angle between the coresponding normals.
(a) Express the angle of intersection of $\partial \operatorname{Ball}_{r}(\underline{a}), \partial \operatorname{Ball}_{R}(\underline{b})$ at \underline{p} via the vectors $\underline{a}-\underline{p}, \underline{b}-\underline{p}$.
(b) Express the angle of intersection of X_{f}, X_{g} at p via $\left.f^{\prime}\right|_{p},\left.g^{\prime}\right|_{p}$.
(c) Verify: the angle of intersection of X_{f}, X_{g} is preserved under shifts/orthogonal transformations.
(d) Let $f(\underline{x})=\sum x_{i}^{2 a}$ and $g(\underline{x})=f(\underline{x})+p_{<2 a}(\underline{x})$, where $a \in \mathbb{N}$ and $p_{<2 a}$ is a polynomial of degree $<2 a$. Prove: "the graphs are tangent at ∞ ". Namely: if $\mathcal{N}_{(f, \underline{x})}, \mathcal{N}_{(g, \underline{x})}$ are the normals to the graphs at a points $\underline{x} \in \Gamma_{f} \cap \Gamma_{g}$, then the angle between $\mathcal{N}_{(f, \underline{x})}, \mathcal{N}_{(g, \underline{x})}$ goes to 0 as $|\underline{x}| \rightarrow \infty$.
(4) (a) Let $f(t)$ be C^{1}. Suppose $z(x, y)$ satisfies the equations $\ln (z)+x \cdot \cos (t)+y \cdot \sin (t)=f(t)$, $-x \cdot \sin (t)+y \cdot \cos (t)=f^{\prime}(t)$, and $x \cdot \cos (t)+y \cdot \sin (t)+f^{\prime \prime}(t) \neq 0$. Prove: $\left(\partial_{x} z\right)^{2}+\left(\partial_{y} z\right)^{2}=z^{2}$.
(b) Verify that the system $x=s^{p}+t^{p}, y=s^{p+1}+t^{p+1}, z=s^{p+2}+t^{p+2}$ defines the real-analytic function $z(x, y)$ (for which values of s, t ?) Compute $\partial_{x} z, \partial_{y} z$.
(c) Consider the map $\mathbb{C} \ni z \rightarrow \exp (z) \in \mathbb{C}$. Identify $\mathbb{C} \cong \mathbb{R}^{2}$, by $z \rightarrow(\operatorname{Re}(z), \operatorname{Im}(z))$, and denote by $\mathbb{R}^{2} \xrightarrow{[\text { exp }]_{\mathbb{R}}} \mathbb{R}^{2}$ the corresponding real function. Prove: this function is C^{w}-invertible locally at each point of \mathbb{R}^{2}. Is this function globally invertible?
(d) Let $\mathbb{R}^{1} \xrightarrow{f} \mathbb{R}^{1}$ be C^{k}, with $\left|f^{\prime}\right|<1,1 \leq k \leq \infty$. Prove that the map $\mathbb{R}^{2} \ni(x, y) \rightarrow$ $(x+f(y), y+f(x)) \in \mathbb{R}^{2}$ is globally(!) C^{k}-invertible.
(e) Give an example of a function $\mathbb{R} \xrightarrow{f} \mathbb{R}$ such that $\left.f^{\prime}\right|_{0}=0$, but f is C^{0}-globally invertible.
(f) Prove: if $\mathbb{R} \xrightarrow{f} \mathbb{R}$ is C^{1} and $\left.f^{\prime}\right|_{0}=0$ then f is not C^{1}-locally invertible at $x=0$.

Hint to q.1.f: $f(x, y)=(x-y)^{2}$.)
Hint to q.1.g: $f(x)=\left\{\begin{array}{l}\frac{x}{2}+x^{2} \sin \frac{1}{x}, x \neq 0 \\ 0, x=0\end{array}\right.$

