
Geometric Calculus 1, 201.1.1031

Homework 9
Fall 2019 (D.Kerner)

(1) (a) Establish the normal form of a Ck-function, k ≥ 1, Rn ⊇ Df
f→ Rm:

(i) If m ≤ n and rank[f ′|p] = m, then in some local (Ck) coordinates at p ∈ Rn the function
is: f(x) = f(p) + (x1, . . . , xm). (We did the case m = 1 in the class.)

(ii) If m > n and rank[f ′|p] = n, then in some local (Ck) coordinates at p ∈ Rn and at
f(p) ∈ Rm the function is: f(x) = (x1, . . . , xn, 0, . . . , 0).

(b) Open mapping theorem: if Rn ⊇ Df
f→ Rm is C1, m ≤ n, and rank[f ′] = m on Df then f

sends open sets to open sets. Give different proofs (via the implicit function theorem, via the
inverse function theorem, via the normal form)

(c) Let Rn ⊇ Df
f→ Rm be C1, m 6= n, and rank(f ′|p) = min(m,n). Can f be locally injec-

tive/surjective at p? (wiki: Peano curve)

(d) Let Rn ⊇ Df
f→ Rn be C1, Df bounded, and f ′ non-degenerate on Df . Disprove: f(∂U) =

∂f(U). Does this hold at least locally? (What happens if Df is unbounded/f ′ non-invertible?)

(e) Let Rn ⊃ Df
f→ R be C2 and assume det[f ′′|p] 6= 0. Prove:

(i) There exists a neighborhood p ∈ U ⊂ Df such that the subset f−1(f(p)) ∩ U is path-
connected. (Check both the case f ′|p = 0 and f ′|p 6= 0.)

(ii) Suppose p is a local minimum. There exist local coordinates at p ∈ Df such that for any
0 < ε� 1 f−1(ε) is a sphere. (What happens for local maximum/saddle?)

(2) (a) Find the global min/max of f on Df in the following cases. (Why does it exist?)

i. f(x, y) =
(
x2 + 2(x− y)2 + 3(x+ y)2

)4(
x2 + y2

)3
, Df = {x2 + y2 = 1}.

ii. f(x, y, z) = x2−y2 +z2−z3 and Df ⊂ R3 is defined by
√
x2 + y2 ≤ z ≤ 1+

√
1− x2 − y2.

iii. f(x, y) = x2+6xy+3y2

x2−xy+y2
on R2 \ {(0, 0)}.

(b) Prove the inequalities using extrema under constraints. When the equalities are realised?
i. Hölder inequality: |

∑
xiyi| ≤ ||x||p · ||y||q, for 1

p
+ 1

q
= 1.

ii. Comparison of norms: ||x||q ≤ ||x||p ≤ n
1
p
− 1

q ||x||q, for 1 ≤ p ≤ q.

iii. Arithmetic/geometric/harmonic means: n∑ 1
xi

≤ n
√
x1 · · · xn ≤

∑
xi

n
, for {xi > 0}i.

(c) Derive Lagrange’s theorem (extrema under constraints) as the corollary of the open mapping
theorem.

(3) In each case below explain why the point(s) you have found indeed realize the absolute min/max.

(a) Find the min/max distances from the point 0 ∈ Rn to the set {x|
∑ |xi|d

a2i
= 1} ⊂ Rn, d > 0.

(b) Find the shortest distance from the set {x|
∏n

i=1 |xi|ai = 1} ⊂ Rn to 0 ∈ Rn.
(c) Among all the boxes inscribed into {x2 + 2y2 + 3z2 = 1} ⊂ R3, whose faces are parallel to the

coordinate planes, find the one of largest volume.

(4) Given a symmetric matrix, A = At ∈Matn×n(R), define the function fA(x) = x · A · xt.
(a) Prove: if x0 is an extremal point of fA on Sn−1 = {x| |x| = 1} ⊂ Rn then A · xt0 ∼ xt0. Thus

A has at least one real eigenvector, denote it by ~v1.
(b) Obtain another eigenvector, ~v2⊥~v1, as the extremal point of fA on the set {x| |x|=1, x ·~v1=0}.
(c) In this way construct an orthonormal basis of Rn composed of eigenvectors of A. Conclude:

A is orthogonally-diagonalizable.


