1. (a) The condition $\vec{v} \cdot(\vec{u} \times \vec{w})=0$ implies: the vectors $\vec{v}, \vec{u}, \vec{w}$ are linearly dependent. Thus the matrix of the system of linear equations is degenerate (of rank at most two). Thus the system has a non-trivial solution.
(b) As the function is differentiable we have $\left.\partial_{\vec{v}} f\right|_{x_{0}}=\left.\operatorname{grad}(f)\right|_{x_{0}} \cdot \frac{\vec{v}}{\|\vec{v}\|}$. As \vec{v} is orthogonal to the direction of the maximal growth at x_{0} we get: $\left.\operatorname{grad}(f)\right|_{x_{0}} \cdot \vec{v}=0$. Therefore $\left.\partial_{\vec{v}} f\right|_{x_{0}}=0$.
2. As f is a continuous function defined on a compact set we get: $\Gamma_{f} \subset \mathbb{R}^{3}$ is a compact subset. And then g (being continuous on a compact set) attains its minimum/maximum, by Weierstrass theorem.
3. Note that the points $(1,0),(-1,0)$ belong to the image $f\left(S^{2}\right)$, e.g. $(1,0)=f(1,0,0)$ and $(-1,0)=f(-1,0,0)$.

As f is continuous, defined on a path-connected set, its image is path-connected. Therefore there exists a (continuous) path from $(1,0)$ to $(-1,0)$, inside the image of f.
4. Observe: as $(x, y) \rightarrow(0,0)$ one has $\sin (x-y) \cdot \sin (x+y)=O\left(\|(x, y)\|^{2}\right)$. In particular, $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$. Thus we extend f to the origin by $f(0,0)=0$ and obtain a continuous function. To check its partial derivative we restrict this function to the coordinate axes:

$$
\left.f\right|_{y=0}=\left\{\begin{array}{l}
\frac{\sin ^{2}(x)}{\sqrt{|x|}}, x \neq 0 \\
0, \quad x=0
\end{array},\left.\quad f\right|_{x=0}=\left\{\begin{array}{l}
-\frac{\sin ^{2}(y)}{\sqrt{|y|}}, y \neq 0 \\
0, \quad x=0
\end{array} .\right.\right.
$$

Therefore $\left.\partial_{x} f\right|_{(0,0)}=0$ and $\left.\partial_{y} f\right|_{(0,0)}=0$, i.e. the extended function possess the first order derivatives at $(0,0)$.
5. As f is continuous on a compact set, its minimum and maximum are achieved, e.g. $\min =f(p)$ and $\max =f(q)$. Take any (continuous) path, $p \stackrel{\gamma}{\leadsto} q$, inside $\overline{\operatorname{Ball}_{1}(0,0)}$. By the intermediate value theorem, the value $\min <c<\max$ is realized on this path, at some point $p t_{\gamma}$.

By taking infinite number of pairwise non-intersecting paths we get the infinite number of points, $\left\{p t_{\gamma}\right\}_{\gamma}$ all satisfying: $f\left(p t_{\gamma}\right)=c$.

