
Solutions to Moed.A, Hedva.3.EE, 06.02.2020

1. (This question is the same as q.4.h from homework 1.)
Given a plane {a · x = 1} ⊂ Rn and a point x0 ∈ Rn, consider the line {x0 + t · a| t ∈ R}. This line is orthogonal to

the plane. It intersects the plane at the moment of time t0 satisfying (x0 + t0 · a)a = 1. Thus t0 =
1−x0·a
||a||2 . Thus the point

symmetric to x0 with respect to this plane is x0 + 2t0 · a = x0 + 2a
1−x0·a
||a||2 .

2. Counter-examples: U = {(x, y, z)| 1 < x2 + y2 < 2} ⊂ R3 or R3 \ {ẑ − axis}.
In both cases U is open, unbounded, path-connected, not simply connected.

3. (a) ∂v⃗f := lim
t→0

f(x+tv⃗)−f(x)
t||v⃗|| . The answer ∂v⃗f := lim

t→0

f(x+tv⃗)−f(x)
t was also accepted.

(b) For each fixed ϕ we have: limr→0
r·cos2(ϕ)

r4+cos4(ϕ) · e
cos(2ϕ) = 0. Therefore, if we want to have directional derivatives, we

must extend the function to the origin by 0. Thus we extend f to (0, 0) by 0.
Fix any direction R2 ∋ v⃗ ̸= 0 and the corresponding angle ϕv⃗ ∈ [0, 2π). We should check the existence of the limit

lim
t→0

||t · v⃗|| · cos2(ϕv⃗) · ecos(2ϕv⃗)

(||t · v⃗||4 + cos4(ϕv⃗)) · t · ||v⃗||
= lim

t→0

|t|
t
· cos

2(ϕv⃗) · ecos(2ϕv⃗)

||t · v⃗||4 + cos4(ϕv⃗)
.

If cos(ϕv⃗) = 0 then the limit is zero. Otherwise the limit does not exist, as the limits for t → 0± are distinct.

4. (a) (This is question 5.d from homework.3)
The functions f1, f2 are continuous therefore the subsets S1, S2 ⊂ R3 are closed. As S1, S2 are also bounded these
sets are compact. Therefore the (continuous) function d(s1, s2) on S1 × S2 attains its minimum. Hence the distance
d(S1, S2) is realized for some points of S1, S2.

(b) Suppose s1, s2 are the points realizing the minimum of the distance. Then the function h(x) = ||x − s2||2 has the
(absolute) minimum at the point x = s1, under the restriction f1(x) = 0. Thus, by Lagrange’s theorem, at this point
holds:

2(s1 − s2) = gradx
(
||x− s2||2

)
|s1 ∼ grad(f1)|s1 .

As we have seen, grad(f1)|s1 is the normal vector to the surface S1 at the point s1. Thus the vector s1 − s2 is
orthogonal to S1 at the point s1. Similarly it is orthogonal to S2 at the point s2.

5. (This is based on question 1.c from homework 7.)
To identify/classify the critical point we need only the first/second derivatives. Therefore (as in homeworks) we

take Taylor’s expansion of f(x, y, z) up to order 2. We get: f(x, y, z) = xy+yz+xz
2 + O(x3, x2y, xy2, y3). Therefore

grad(f)|(0,0,0) = 0, i.e. the origin is indeed a critical point, and it is enough to classify the critical point of xy+yz+xz
2 .

This can be done in many ways e.g.:
• Restrict to the lines {y = x, z = 0} and {y = −x, z = 0}:

– f(x, x, 0) = x2

3−sin(x)−cos(x) ≥ 0. This vanishes at x = 0 and is positive otherwise. Thus x = 0 is a minimum.

– f(x,−x, 0) = −x2

3−sin(x)−cos(x) ≤ 0. This vanishes at x = 0 and is negative otherwise. Thus x = 0 is a maximum.

Thus (0, 0, 0) is a saddle point.

• The Hessian matrix is ∂2f |(0,0,0) = 1
2

0 1 1
1 0 1
1 1 0

. To check whether this is positive/negative definite we can use

Sylverster’s criterion. The first 2 × 2 minor is det

[
0 1
1 0

]
= −1. Thus ∂2f |(0,0,0) is not positive definite. Similarly,

(−∂2f |(0,0,0)) is not positive definite.

Therefore ∂2f |(0,0,0) is neither positive nor negative definite. Thus (0, 0, 0) is a saddle point.

6. (This is based on q.3.v from homework 11.)
The condition y

2 ≤ z ≤ y implies y ≥ 0, thus |y| = y. We pass to the iterated integral, and then to polar coordinates:

1∫
−1

( ∫∫
0≤y2+z2≤x

2
3

y
2≤z≤y

yex
2

dydz
)
dx =

1∫
−1

( ∫∫
0≤r≤|x|

1
3

arctan( 1
2 )≤ϕ≤π

4

r2cos(ϕ)drdϕ
)
ex

2

dx = (
1√
2
− sin(arctan(

1

2
))

1∫
−1

|x|
3
ex

2

dx =

= 2
( 1√

2
− sin(arctan( 12 ))

3

1∫
0

xex
2

dx =
( 1√

2
− sin(arctan( 12 ))

3
· (e1 − 1).

One can also compute sin(arctan( 12 )), e.g., sin
2 = sin2

sin2+cos2 = tan2

tan2+1 , thus sin(arctan(
1
2 )) =

1√
5
.

7. (This is based on question 5 from homework 14.)
(a) By the direct check: ∂xFy = ∂yFx. Therefore the field is locally conservative in R2 \ (0, 0).
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(b) To check that the field is globally conservative we should check:
∮⃗
C

F⃗ dC⃗ = 0 for any loop in R2 \ (0, 0). As was shown

in homework 14, it is enough to check the vanishing of just one integral, for C = {x2 + y2 = R2} ⊂ R2. This follows
also from Green’s theorem. We check the vanishing:∮

x2+y2=R2

(y2 − x2)dx− 2xydy

(x2 + y2)2

x=R·cos(ϕ)
y=R·sin(ϕ)

=

2π∫
0

−sin3(ϕ)− cos2(ϕ)sin(ϕ)

R
dϕ = 0.

Therefore the field is globally conservative in R2 \ (0, 0).
Another solution: Once we check that ∂xFy = ∂yFx, we can try to find the potential. By integrating

∫
Fxdx,

∫
Fydy

one readily sees that F⃗ = grad(ϕ) for ϕ(x, y) = x
x2+y2 . Note that ϕ is well defined (and infinitely differentiable) on the

whole R2 \ {0, 0}. Thus F⃗ is conservative.

8. The surface is closed and the field is continuously differentiable in the whole R3. We use the Gauß theorem (note the
minus sign due to the inner normal):∫∫

S⃗

F⃗ dS⃗ = −
∫∫∫

x2

a2 + y2

b2
+ z2

c2
≤1

divF⃗ · dxdydz

x=ax̃
y=bỹ
z=cz̃= −abc

∫∫∫
x̃2+ỹ2+z̃2≤1

(4x3 + 8y7 + 1)dx̃dỹdz̃ = −abc

∫∫∫
x̃2+ỹ2+z̃2≤1

1dx̃dỹdz̃ = −4π

3
abc.


