Solutions to Moed.A, Hedva.3.EE, 06.02.2020

1. (This question is the same as q.4.h from homework 1.)

Given a plane $\{\underline{a} \cdot \underline{x}=1\} \subset \mathbb{R}^{n}$ and a point $\underline{x}_{0} \in \mathbb{R}^{n}$, consider the line $\left\{\underline{x}_{0}+t \cdot \underline{a} \mid t \in \mathbb{R}\right\}$. This line is orthogonal to the plane. It intersects the plane at the moment of time t_{0} satisfying $\left(\underline{x}_{0}+t_{0} \cdot \underline{a}\right) \underline{a}=1$. Thus $t_{0}=\frac{1-\underline{x}_{0} \cdot \underline{a}}{\|\underline{a}\|^{2}}$. Thus the point symmetric to \underline{x}_{0} with respect to this plane is $\underline{x}_{0}+2 t_{0} \cdot \underline{a}=\underline{x}_{0}+2 \underline{a} \frac{1-\underline{x}_{0} \cdot \underline{a}}{\|\underline{a}\|^{2}}$.
2. Counter-examples: $\mathcal{U}=\left\{(x, y, z) \mid 1<x^{2}+y^{2}<2\right\} \subset \mathbb{R}^{3}$ or $\mathbb{R}^{3} \backslash\{\hat{z}$-axis $\}$.

In both cases \mathcal{U} is open, unbounded, path-connected, not simply connected.
3. (a) $\partial_{\vec{v}} f:=\lim _{t \rightarrow 0} \frac{f(\underline{x}+t \vec{v})-f(\underline{x})}{t\|\vec{v}\|}$. The answer $\partial_{\vec{v}} f:=\lim _{t \rightarrow 0} \frac{f(\underline{x}+t \vec{v})-f(\underline{x})}{t}$ was also accepted.
(b) For each fixed ϕ we have: $\lim _{r \rightarrow 0} \frac{r \cdot \cos ^{2}(\phi)}{r^{4}+\cos ^{4}(\phi)} \cdot e^{\cos (2 \phi)}=0$. Therefore, if we want to have directional derivatives, we must extend the function to the origin by 0 . Thus we extend f to $(0,0)$ by 0 .
Fix any direction $\mathbb{R}^{2} \ni \vec{v} \neq 0$ and the corresponding angle $\phi_{\vec{v}} \in[0,2 \pi)$. We should check the existence of the limit

$$
\lim _{t \rightarrow 0} \frac{\|t \cdot \vec{v}\| \cdot \cos ^{2}\left(\phi_{\vec{v}}\right) \cdot e^{\cos \left(2 \phi_{\vec{v}}\right)}}{\left(\|t \cdot \vec{v}\|^{4}+\cos ^{4}\left(\phi_{\vec{v}}\right)\right) \cdot t \cdot\|\vec{v}\|}=\lim _{t \rightarrow 0} \frac{|t|}{t} \cdot \frac{\cos ^{2}\left(\phi_{\vec{v}}\right) \cdot e^{\cos \left(2 \phi_{\vec{v}}\right)}}{\|t \cdot \vec{v}\|^{4}+\cos ^{4}\left(\phi_{\vec{v}}\right)}
$$

If $\cos \left(\phi_{\vec{v}}\right)=0$ then the limit is zero. Otherwise the limit does not exist, as the limits for $t \rightarrow 0^{ \pm}$are distinct.
4. (a) (This is question $5 . \mathrm{d}$ from homework.3)

The functions f_{1}, f_{2} are continuous therefore the subsets $S_{1}, S_{2} \subset \mathbb{R}^{3}$ are closed. As S_{1}, S_{2} are also bounded these sets are compact. Therefore the (continuous) function $d\left(s_{1}, s_{2}\right)$ on $S_{1} \times S_{2}$ attains its minimum. Hence the distance $d\left(S_{1}, S_{2}\right)$ is realized for some points of S_{1}, S_{2}.
(b) Suppose s_{1}, s_{2} are the points realizing the minimum of the distance. Then the function $h(\underline{x})=\left\|\underline{x}-s_{2}\right\|^{2}$ has the (absolute) minimum at the point $\underline{x}=s_{1}$, under the restriction $f_{1}(\underline{x})=0$. Thus, by Lagrange's theorem, at this point holds:

$$
2\left(s_{1}-s_{2}\right)=\left.\left.\operatorname{grad}_{\underline{x}}\left(\left\|\underline{x}-s_{2}\right\|^{2}\right)\right|_{s_{1}} \sim \operatorname{grad}\left(f_{1}\right)\right|_{s_{1}} .
$$

As we have seen, $\left.\operatorname{grad}\left(f_{1}\right)\right|_{s_{1}}$ is the normal vector to the surface S_{1} at the point s_{1}. Thus the vector $s_{1}-s_{2}$ is orthogonal to S_{1} at the point s_{1}. Similarly it is orthogonal to S_{2} at the point s_{2}.
5. (This is based on question 1.c from homework 7.)

To identify/classify the critical point we need only the first/second derivatives. Therefore (as in homeworks) we take Taylor's expansion of $f(x, y, z)$ up to order 2. We get: $f(x, y, z)=\frac{x y+y z+x z}{2}+O\left(x^{3}, x^{2} y, x y^{2}, y^{3}\right)$. Therefore $\left.\operatorname{grad}(f)\right|_{(0,0,0)}=0$, i.e. the origin is indeed a critical point, and it is enough to classify the critical point of $\frac{x y+y z+x z}{2}$. This can be done in many ways e.g.:

- Restrict to the lines $\{y=x, z=0\}$ and $\{y=-x, z=0\}$:
$-f(x, x, 0)=\frac{x^{2}}{3-\sin (x)-\cos (x)} \geq 0$. This vanishes at $x=0$ and is positive otherwise. Thus $x=0$ is a minimum.
$-f(x,-x, 0)=\frac{-x^{2}}{3-\sin (x)-\cos (x)} \leq 0$. This vanishes at $x=0$ and is negative otherwise. Thus $x=0$ is a maximum. Thus $(0,0,0)$ is a saddle point.
- The Hessian matrix is $\left.\partial^{2} f\right|_{(0,0,0)}=\frac{1}{2}\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$. To check whether this is positive/negative definite we can use Sylverster's criterion. The first 2×2 minor is $\operatorname{det}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=-1$. Thus $\left.\partial^{2} f\right|_{(0,0,0)}$ is not positive definite. Similarly, $\left(-\left.\partial^{2} f\right|_{(0,0,0)}\right)$ is not positive definite.
Therefore $\left.\partial^{2} f\right|_{(0,0,0)}$ is neither positive nor negative definite. Thus $(0,0,0)$ is a saddle point.

6. (This is based on q.3.v from homework 11.)

The condition $\frac{y}{2} \leq z \leq y$ implies $y \geq 0$, thus $|y|=y$. We pass to the iterated integral, and then to polar coordinates:

$$
\begin{gathered}
\int_{-1}^{1}\left(\iint_{\substack{ \\
0 \leq y^{2}+z^{2} \leq x^{2} \\
\frac{2}{2} \leq z \leq y}} y e^{x^{2}} d y d z\right) d x=\int_{-1}^{1}\left(\iint_{\substack{0 \leq r \leq|x|^{\frac{1}{3}} \\
\arctan \left(\frac{1}{2}\right) \leq \phi \leq \frac{\pi}{4}}} r^{2} \cos (\phi) d r d \phi\right) e^{x^{2}} d x=\left(\frac{1}{\sqrt{2}}-\sin \left(\arctan \left(\frac{1}{2}\right)\right) \int_{-1}^{1} \frac{|x|}{3} e^{x^{2}} d x=\right. \\
=2 \frac{\left(\frac{1}{\sqrt{2}}-\sin \left(\arctan \left(\frac{1}{2}\right)\right)\right.}{3} \int_{0}^{1} x e^{x^{2}} d x=\frac{\left(\frac{1}{\sqrt{2}}-\sin \left(\arctan \left(\frac{1}{2}\right)\right)\right.}{3} \cdot\left(e^{1}-1\right) .
\end{gathered}
$$

One can also compute $\sin \left(\arctan \left(\frac{1}{2}\right)\right)$, e.g., $\sin ^{2}=\frac{\sin ^{2}}{\sin ^{2}+\cos ^{2}}=\frac{\tan ^{2}}{\tan ^{2}+1}$, thus $\sin \left(\arctan \left(\frac{1}{2}\right)\right)=\frac{1}{\sqrt{5}}$.
7. (This is based on question 5 from homework 14.)
(a) By the direct check: $\partial_{x} F_{y}=\partial_{y} F_{x}$. Therefore the field is locally conservative in $\mathbb{R}^{2} \backslash(0,0)$.
(b) To check that the field is globally conservative we should check: $\oint_{\vec{C}} \vec{F} d \vec{C}=0$ for any loop in $\mathbb{R}^{2} \backslash(0,0)$. As was shown in homework 14, it is enough to check the vanishing of just one integral, for $C=\left\{x^{2}+y^{2}=R^{2}\right\} \subset \mathbb{R}^{2}$. This follows also from Green's theorem. We check the vanishing:

Therefore the field is globally conservative in $\mathbb{R}^{2} \backslash(0,0)$.
Another solution: Once we check that $\partial_{x} F_{y}=\partial_{y} F_{x}$, we can try to find the potential. By integrating $\int F_{x} d x, \int F_{y} d y$ one readily sees that $\vec{F}=\operatorname{grad}(\phi)$ for $\phi(x, y)=\frac{x}{x^{2}+y^{2}}$. Note that ϕ is well defined (and infinitely differentiable) on the whole $\mathbb{R}^{2} \backslash\{0,0\}$. Thus \vec{F} is conservative.
8. The surface is closed and the field is continuously differentiable in the whole \mathbb{R}^{3}. We use the Gauß theorem (note the minus sign due to the inner normal):

$$
\iint_{\vec{S}} \vec{F} d \vec{S}=-\iiint_{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2} \leq 1}} d i v \vec{F} \cdot d x d y d z \stackrel{\substack{x=a \tilde{x} \\ y=b \tilde{\tilde{z}} \\ z=c \tilde{z}}}{=}-a b c \iiint_{\tilde{x}^{2}+\tilde{y}^{2}+\tilde{z}^{2} \leq 1}\left(4 x^{3}+8 y^{7}+1\right) d \tilde{x} d \tilde{y} d \tilde{z}=-a b c \iiint_{\tilde{x}^{2}+\tilde{y}^{2}+\tilde{z}^{2} \leq 1} 1 d \tilde{x} d \tilde{y} d \tilde{z}=-\frac{4 \pi}{3} a b c
$$

