Solutions to Moed.B, Hedva.3.EE, 27.02.2020

1. The domain can be presented in the form $\{(x-1)^2 + (y+1)^2 \le 2\}$.

<u>Solution 1.</u> The function f(x,y) = |xy| satisfies: f(x,y) = f(-x,y) = f(x,-y) = f(-x,-y). Therefore, while searching for the critical points in the interior points, we can assume $x \ge 0$ and $y \ge 0$. The only critical point of xy is (0,0). Note that it lies on the boundary of the ball. To this we must add also the points where f is non-differentiable. these are all the points satisfying xy = 0. At all such points f vanishes.

When looking for the critical points of f on the boundary of the ball, we again use f(x,y) = f(-x,y) = f(x,-y) = f(x,-y)f(-x,-y). Therefore it is enough to check the critical points of xy on the circle $(x-1)^2 + (y+1)^2 = 2$, and also to check the points where the function might have the differentiability problem, i.e. |xy| = 0. The critical points of xy on the circle $(x-1)^2 + (y+1)^2 = 2$ are obtained in the standard way. (e.g. by the condition $grad(xy) \sim grad((x-1)^2 + (y+1)^2 - 2)$.) One gets the condition (y - x + 1)(y + x) = 0. Together with $(x - 1)^2 + (y + 1)^2 = 2$ one gets:

- Either x = -y = 0, with f(0, 0) = 0;
- Or x = -y = 2, with f(-2, 2) = 4;
- Or y + 1 = x, with $x = \frac{1 \pm \sqrt{3}}{2}$. Here: $f(\frac{1 \pm \sqrt{3}}{2}, \frac{-1 \pm \sqrt{3}}{2}) = |\frac{-1 3}{2}| = 2$. Thus the minimal value of f is 0, while the maximal is 4.

<u>Solution 2.</u> As f(x,y) = |xy|, one has: $f \ge 0$. Thus the minimal value of f is 0 and it is obtained at the set of points where xy = 0. To find the maximal value of f one can pass to the polar coordinates, then the expression for f is: $r^2 \left| \frac{\sin(2\phi)}{2} \right|$. Note that $|\sin(2\phi)| \le 1$ and attains 1 for $\phi = -\frac{\pi}{4}$. In addition, by drawing the circle $\{(x-1)^2 + (y+1)^2 = 2\}$, one gets: the maximal value of r is $2\sqrt{2}$ and is attained for $\phi = -\frac{\pi}{4}$. Altogether we get: $f(x,y) \leq 4$ and this value is achieved at the point (2, -2).

2. A counterexample: f(x, y, z) = x + y + z.

More generally, if f satisfies the assumptions then by the implicit function theorem we have: $\frac{\partial y}{\partial x} = -\frac{\partial_x f}{\partial_y f}, \frac{\partial z}{\partial y} = -\frac{\partial_y f}{\partial_z f},$ $\frac{\partial x}{\partial z} = -\frac{\partial_z f}{\partial_x f}$. Thus $\frac{\partial y}{\partial x} \cdot \frac{\partial z}{\partial y} = -1$. Therefore any f that satisfies the assumptions gives a counterexample.

3. We pass from the triple integral to the repeated integral, projecting onto the yz-plane. The projection is the domain bounded by two ellipses. Thus we have:

$$(1) \qquad \iiint_{V} \frac{x}{1+x^{2}} dx dy dz = \iint_{\{\frac{1}{2} \le 4y^{2} + 9z^{2} \le 1\}} \Big(\int_{0}^{\sqrt{1-4y^{2}-9z^{2}}} \frac{x}{1+x^{2}} dx \Big) dy dz = \iint_{\{\frac{1}{2} \le 4y^{2} + 9z^{2} \le 1\}} \frac{\ln(2-4y^{2}-9z^{2})}{2} dy dz \xrightarrow{\tilde{y}=2y}_{\Xi=3z} \\ = \iint_{\{\frac{1}{2} \le \tilde{y}^{2} + \tilde{z}^{2} \le 1\}} \frac{\ln(2-\tilde{y}^{2}-\tilde{z}^{2})}{2 \cdot 2 \cdot 3} d\tilde{y} d\tilde{z} = 2\pi \int_{\{\frac{1}{\sqrt{2}} \le r \le 1\}} \frac{\ln(2-r^{2})}{2 \cdot 2 \cdot 3} r \cdot dr \xrightarrow{t=r^{2}}{Z} \frac{2\pi}{4} \int_{\frac{1}{2}}^{1} \ln(2-t) dt = \frac{2\pi}{24} \left(\frac{3}{2} \ln(\frac{3}{2}) + \frac{1}{2}\right).$$

4. By the assumptions the surface S is smooth at each point, and its normal is $\nabla(f)$. Therefore:

$$\iint_{S} \nabla(f) \cdot d\vec{S} = \iint_{S} \nabla(f) \cdot \frac{\nabla(f)}{||\nabla(f)||} dS = \iint_{S} ||\nabla(f)|| \cdot dS.$$

Here $||\nabla(f)||$ is a continuous positive function on S. The area of S is positive, as S is smooth. Therefore $\iint_{\mathcal{T}} ||\nabla(f)|| \cdot dS > 0$.

5. By the direct check, the field $\vec{F} = \frac{(y, -x)}{x^2 + y^2}$ is locally conservative. Therefore $\int_C \vec{F} \cdot d\vec{C} + \int_C \vec{F} \cdot d\vec{C}_1 + \int_{C_2} \vec{F} \cdot d\vec{C}_2 + \int_{C_3} \vec{F} \cdot d\vec{C}_3 = 0$, where: $C_1 = \{x = 0, \ y \in [-\sqrt[10]{100}, -r]\}, \qquad C_2 = \{x = 0, \ y \in [r, \sqrt[10]{100}]\}, \qquad C_3 = \{x^2 + y^2 = r^2, \ x \le 0\}.$ (Note that the curves C, C_1, C_2, C_3 bound a simply connected region.) Note that $\vec{F}|_{x=0} = \frac{(y,0)}{y^2}$. Therefore $\int_{C_1} \vec{F} \cdot d\vec{C}_1 = 0 = \int_{C_2} \vec{F} \cdot d\vec{C}_2$. Then $\int_C \vec{F} \cdot d\vec{C} = -\int_{C_3} \vec{F} \cdot d\vec{C}_3$, here C_3 is oriented clockwise. We get:

$$\int_{C} \vec{F} \cdot d\vec{C} = -\int_{C_3} \frac{(y, -x)}{x^2 + y^2} \cdot d\vec{C}_3 = \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \frac{(r \cdot \sin(\phi), -r \cdot \cos(\phi))}{r^2} \cdot (-r \cdot \sin(\phi), r \cdot \cos(\phi)) d\phi = -\pi.$$

6. <u>Solution 1.</u> Think of the curve C as the (oriented) boundary of the surface $S = \{x^2 + y^2 + z^2 \le 1, y + z = -1\}$. This surface is a disc. The (prescribed) orientation of the curve determines the direction of the normal to the disc: $\mathcal{N} = (0, 1, 1)$. The

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S (1,1,1) \cdot d\vec{S} = \iint_S (1,1,1) \cdot \frac{(0,1,1)}{|(0,1,1)|} dS = \sqrt{2} \iint_S 1 \cdot dS = \sqrt{2} \cdot (\text{area of } S)$$

The area of S can be computed in various ways. For example, its diameter is the distance between the points (0, 0, -1), (0, -1, 0), hence the radius equals $\frac{1}{\sqrt{2}}$. Altogether we get:

$$\oint_C \vec{F} \cdot d\vec{r} = \sqrt{2} \cdot \pi \cdot \frac{1}{2}$$

Solution 2. We use the following parametrization of the curve: $\gamma(t) = (x(t), y(t), z(t)) = \left(\frac{\cos(t)}{\sqrt{2}}, \frac{\sin(t)-1}{2}, -\frac{\sin(t)+1}{2}\right).$ Note that $\gamma'(t) = \left(-\frac{\sin(t)}{\sqrt{2}}, \frac{\cos(t)}{2}, -\frac{\cos(t)}{2}\right)$ and $F(\gamma(t)) = \left(-\sin(t)-1, \frac{\cos(t)}{\sqrt{2}}, \frac{\cos(t)}{\sqrt{2}} + \frac{\sin(t)-1}{2}\right).$ Therefore the scalar product of these two vectors is: $F(\gamma(t)) \cdot \gamma'(t) = \frac{\sin^2(t)}{\sqrt{2}} + \frac{\sin(t)}{\sqrt{2}} - \frac{\sin(t)\cos(t)}{4} + \frac{\cos(t)}{4}.$

Substitute this into the integral: $\oint_C \vec{F} \cdot d\vec{r} = \int_{t=0}^{2\pi} F(\gamma(t)) \cdot \gamma'(t) dt = \dots$

 $\mathbf{2}$

The integral over $\sin(t)$ vanishes, and so do the integrals over $\cos(t)$ and $\sin(t)\cos(t) = \frac{\sin(2t)}{2}$. We're finally left with

$$\oint_C \vec{F} \cdot d\vec{r} = \dots = \int_{t=0}^{2\pi} \frac{\sin^2(t)}{\sqrt{2}} \, dt = \frac{1}{2\sqrt{2}} \int_{t=0}^{2\pi} 1 - \cos(2t) \, dt = \frac{\pi}{\sqrt{2}}$$