1. The domain can be presented in the form $\left\{(x-1)^{2}+(y+1)^{2} \leq 2\right\}$.

Solution 1. The function $f(x, y)=|x y|$ satisfies: $f(x, y)=f(-x, y)=f(x,-y)=f(-x,-y)$. Therefore, while searching for the critical points in the interior points, we can assume $x \geq 0$ and $y \geq 0$. The only critical point of $x y$ is $(0,0)$. Note that it lies on the boundary of the ball. To this we must add also the points where f is non-differentiable, these are all the points satisfying $x y=0$. At all such points f vanishes.

When looking for the critical points of f on the boundary of the ball, we again use $f(x, y)=f(-x, y)=f(x,-y)=$ $f(-x,-y)$. Therefore it is enough to check the critical points of $x y$ on the circle $(x-1)^{2}+(y+1)^{2}=2$, and also to check the points where the function might have the differentiability problem, i.e. $|x y|=0$. The critical points of $x y$ on the circle $(x-1)^{2}+(y+1)^{2}=2$ are obtained in the standard way. (e.g. by the condition $\operatorname{grad}(x y) \sim \operatorname{grad}\left((x-1)^{2}+(y+1)^{2}-2\right)$.) One gets the condition $(y-x+1)(y+x)=0$. Together with $(x-1)^{2}+(y+1)^{2}=2$ one gets:

- Either $x=-y=0$, with $f(0,0)=0$;
- Or $x=-y=2$, with $f(-2,2)=4$;
- Or $y+1=x$, with $x=\frac{1 \pm \sqrt{3}}{2}$. Here: $f\left(\frac{1 \pm \sqrt{3}}{2}, \frac{-1 \pm \sqrt{3}}{2}\right)=\left|\frac{-1-3}{2}\right|=2$.

Thus the minimal value of f is 0 , while the maximal is 4 .
Solution 2. As $f(x, y)=|x y|$, one has: $f \geq 0$. Thus the minimal value of f is 0 and it is obtained at the set of points where $x y=0$. To find the maximal value of f one can pass to the polar coordinates, then the expression for f is: $r^{2}\left|\frac{\sin (2 \phi)}{2}\right|$. Note that $|\sin (2 \phi)| \leq 1$ and attains 1 for $\phi=-\frac{\pi}{4}$. In addition, by drawing the circle $\left\{(x-1)^{2}+(y+1)^{2}=2\right\}$, one gets: the maximal value of r is $2 \sqrt{2}$ and is attained for $\phi=-\frac{\pi}{4}$. Altogether we get: $f(x, y) \leq 4$ and this value is achieved at the point $(2,-2)$.
2. A counterexample: $f(x, y, z)=x+y+z$.

More generally, if f satisfies the assumptions then by the implicit function theorem we have: $\frac{\partial y}{\partial x}=-\frac{\partial_{x} f}{\partial_{y} f}, \frac{\partial z}{\partial y}=-\frac{\partial_{y} f}{\partial_{z} f}$, $\frac{\partial x}{\partial z}=-\frac{\partial_{z} f}{\partial_{x} f}$. Thus $\frac{\partial y}{\partial x} \cdot \frac{\partial z}{\partial y} \cdot \frac{\partial x}{\partial z}=-1$. Therefore any f that satisfies the assumptions gives a counterexample.
3. We pass from the triple integral to the repeated integral, projecting onto the $y z$-plane. The projection is the domain bounded by two ellipses. Thus we have:

$$
\begin{align*}
& \iiint_{V} \frac{x}{1+x^{2}} d x d y d z=\iint_{\left\{\frac{1}{2} \leq 4 y^{2}+9 z^{2} \leq 1\right\}}\left(\int_{0}^{\sqrt{1-4 y^{2}-9 z^{2}}} \frac{x}{1+x^{2}} d x\right) d y d z=\int_{\left\{\frac{1}{2} \leq 4 y^{2}+9 z^{2} \leq 1\right\}} \frac{\ln \left(2-4 y^{2}-9 z^{2}\right)}{2} d y d z \stackrel{\substack{\tilde{y}=2 y \\
z=3 z}}{ } \tag{1}\\
& \quad=\iint_{\left\{\frac{1}{2} \leq \tilde{y}^{2}+\tilde{z}^{2} \leq 1\right\}} \frac{\ln \left(2-\tilde{y}^{2}-\tilde{z}^{2}\right)}{2 \cdot 2 \cdot 3} d \tilde{y} d \tilde{z}=2 \pi \int_{\left\{\frac{1}{\sqrt{2}} \leq r \leq 1\right\}} \frac{\ln \left(2-r^{2}\right)}{2 \cdot 2 \cdot 3} r \cdot d r \xlongequal{t=r^{2}} \frac{2 \pi}{24} \int_{\frac{1}{2}}^{1} \ln (2-t) d t=\frac{2 \pi}{24}\left(\frac{3}{2} \ln \left(\frac{3}{2}\right)+\frac{1}{2}\right) .
\end{align*}
$$

4. By the assumptions the surface S is smooth at each point, and its normal is $\nabla(f)$. Therefore:

$$
\iint_{S} \nabla(f) \cdot d \vec{S}=\iint_{S} \nabla(f) \cdot \frac{\nabla(f)}{\|\nabla(f)\|} d S=\iint_{S}\|\nabla(f)\| \cdot d S
$$

Here $\|\nabla(f)\|$ is a continuous positive function on S. The area of S is positive, as S is smooth. Therefore $\iint_{S}\|\nabla(f)\| \cdot d S>0$.
5. By the direct check, the field $\vec{F}=\frac{(y,-x)}{x^{2}+y^{2}}$ is locally conservative. Therefore $\int_{C} \vec{F} \cdot d \vec{C}+\int_{C_{1}} \vec{F} \cdot d \vec{C}_{1}+\int_{C_{2}} \vec{F} \cdot d \vec{C}_{2}+\int_{C_{3}} \vec{F} \cdot d \vec{C}_{3}=0$, where: $C_{1}=\{x=0, y \in[-\sqrt[10]{100},-r]\}, \quad C_{2}=\{x=0, y \in[r, \sqrt[10]{100}]\}, \quad C_{3}=\left\{x^{2}+y^{2}=r^{2}, x \leq 0\right\}$.
(Note that the curves C, C_{1}, C_{2}, C_{3} bound a simply connected region.)
Note that $\left.\vec{F}\right|_{x=0}=\frac{(y, 0)}{y^{2}}$. Therefore $\int_{C_{1}} \vec{F} \cdot d \vec{C}_{1}=0=\int_{C_{2}} \vec{F} \cdot d \vec{C}_{2}$.
Then $\int_{C} \vec{F} \cdot d \vec{C}=-\int_{C_{3}} \vec{F} \cdot d \vec{C}_{3}$, here C_{3} is oriented clockwise. We get:

$$
\int_{C} \vec{F} \cdot d \vec{C}=-\int_{C_{3}} \frac{(y,-x)}{x^{2}+y^{2}} \cdot d \vec{C}_{3}=\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} \frac{(r \cdot \sin (\phi),-r \cdot \cos (\phi))}{r^{2}} \cdot(-r \cdot \sin (\phi), r \cdot \cos (\phi)) d \phi=-\pi .
$$

6. Solution 1. Think of the curve C as the (oriented) boundary of the surface $S=\left\{x^{2}+y^{2}+z^{2} \leq 1, y+z=-1\right\}$. This surface is a disc. The (prescribed) orientation of the curve determines the direction of the normal to the disc: $\mathcal{N}=(0,1,1)$. The
field has continuous partial derivatives on S, therefore we can use Stokes theorem. Note that $\operatorname{rot}(\vec{F})=(1,1,1)$ thus we have:

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{S}(1,1,1) \cdot d \vec{S}=\iint_{S}(1,1,1) \cdot \frac{(0,1,1)}{|(0,1,1)|} d S=\sqrt{2} \iint_{S} 1 \cdot d S=\sqrt{2} \cdot(\text { area of } S)
$$

The area of S can be computed in various ways. For example, its diameter is the distance between the points $(0,0,-1)$, $(0,-1,0)$, hence the radius equals $\frac{1}{\sqrt{2}}$. Altogether we get:

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\sqrt{2} \cdot \pi \cdot \frac{1}{2} .
$$

Solution 2. We use the following parametrization of the curve: $\gamma(t)=(x(t), y(t), z(t))=\left(\frac{\cos (t)}{\sqrt{2}}, \frac{\sin (t)-1}{2},-\frac{\sin (t)+1}{2}\right)$.
Note that $\gamma^{\prime}(t)=\left(-\frac{\sin (t)}{\sqrt{2}}, \frac{\cos (t)}{2},-\frac{\cos (t)}{2}\right) \quad$ and $\quad F(\gamma(t))=\left(-\sin (t)-1, \frac{\cos (t)}{\sqrt{2}}, \frac{\cos (t)}{\sqrt{2}}+\frac{\sin (t)-1}{2}\right)$.
Therefore the scalar product of these two vectors is: $F(\gamma(t)) \cdot \gamma^{\prime}(t)=\frac{\sin ^{2}(t)}{\sqrt{2}}+\frac{\sin (t)}{\sqrt{2}}-\frac{\sin (t) \cos (t)}{4}+\frac{\cos (t)}{4}$.
Substitute this into the integral: $\oint_{C} \vec{F} \cdot d \vec{r}=\int_{t=0}^{2 \pi} F(\gamma(t)) \cdot \gamma^{\prime}(t) d t=\ldots$.
The integral over $\sin (t)$ vanishes, and so do the integrals over $\cos (t)$ and $\sin (t) \cos (t)=\frac{\sin (2 t)}{2}$. We're finally left with

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\ldots=\int_{t=0}^{2 \pi} \frac{\sin ^{2}(t)}{\sqrt{2}} d t=\frac{1}{2 \sqrt{2}} \int_{t=0}^{2 \pi} 1-\cos (2 t) d t=\frac{\pi}{\sqrt{2}}
$$

