
Solutions to Moed.B, Hedva.3.EE, 27.02.2020

1. The domain can be presented in the form {(x− 1)2 + (y + 1)2 ≤ 2}.
Solution 1. The function f(x, y) = |xy| satisfies: f(x, y) = f(−x, y) = f(x,−y) = f(−x,−y). Therefore, while

searching for the critical points in the interior points, we can assume x ≥ 0 and y ≥ 0. The only critical point of xy is
(0, 0). Note that it lies on the boundary of the ball. To this we must add also the points where f is non-differentiable,
these are all the points satisfying xy = 0. At all such points f vanishes.

When looking for the critical points of f on the boundary of the ball, we again use f(x, y) = f(−x, y) = f(x,−y) =
f(−x,−y). Therefore it is enough to check the critical points of xy on the circle (x− 1)2+(y+1)2 = 2, and also to check
the points where the function might have the differentiability problem, i.e. |xy| = 0. The critical points of xy on the circle
(x−1)2+(y+1)2 = 2 are obtained in the standard way. (e.g. by the condition grad(xy) ∼ grad((x−1)2+(y+1)2−2).)
One gets the condition (y − x+ 1)(y + x) = 0. Together with (x− 1)2 + (y + 1)2 = 2 one gets:

• Either x = −y = 0, with f(0, 0) = 0;
• Or x = −y = 2, with f(−2, 2) = 4;

• Or y + 1 = x, with x = 1±
√
3

2 . Here: f( 1±
√
3

2 , −1±
√
3

2 ) = |−1−3
2 | = 2.

Thus the minimal value of f is 0, while the maximal is 4.

Solution 2. As f(x, y) = |xy|, one has: f ≥ 0. Thus the minimal value of f is 0 and it is obtained at the set of
points where xy = 0. To find the maximal value of f one can pass to the polar coordinates, then the expression for f is:

r2| sin(2ϕ)2 |. Note that |sin(2ϕ)| ≤ 1 and attains 1 for ϕ = −π
4 . In addition, by drawing the circle {(x−1)2+(y+1)2 = 2},

one gets: the maximal value of r is 2
√
2 and is attained for ϕ = −π

4 . Altogether we get: f(x, y) ≤ 4 and this value is
achieved at the point (2,−2).

2. A counterexample: f(x, y, z) = x+ y + z.

More generally, if f satisfies the assumptions then by the implicit function theorem we have: ∂y
∂x = −∂xf

∂yf
, ∂z

∂y = −∂yf
∂zf

,
∂x
∂z = − ∂zf

∂xf
. Thus ∂y

∂x · ∂z
∂y · ∂x

∂z = −1. Therefore any f that satisfies the assumptions gives a counterexample.

3. We pass from the triple integral to the repeated integral, projecting onto the yz-plane. The projection is the domain
bounded by two ellipses. Thus we have:

(1)

∫∫∫
V

x

1 + x2
dxdydz =

∫∫
{ 1

2≤4y2+9z2≤1}

( √
1−4y2−9z2∫

0

x

1 + x2
dx

)
dydz =

∫∫
{ 1

2≤4y2+9z2≤1}

ln(2− 4y2 − 9z2)

2
dydz

ỹ=2y
z̃=3z==

=

∫∫
{ 1

2≤ỹ2+z̃2≤1}

ln(2− ỹ2 − z̃2)

2 · 2 · 3
dỹdz̃ = 2π

∫
{ 1√

2
≤r≤1}

ln(2− r2)

2 · 2 · 3
r · dr t=r2

==
2π

24

1∫
1
2

ln(2− t)dt =
2π

24

(
3

2
ln(

3

2
) +

1

2

)
.

4. By the assumptions the surface S is smooth at each point, and its normal is ∇(f). Therefore:∫∫
S

∇(f) · dS⃗ =

∫∫
S

∇(f) · ∇(f)

||∇(f)||
dS =

∫∫
S

||∇(f)|| · dS.

Here ||∇(f)|| is a continuous positive function on S. The area of S is positive, as S is smooth. Therefore
∫∫
S

||∇(f)||·dS > 0.

5. By the direct check, the field F⃗ = (y,−x)
x2+y2 is locally conservative. Therefore

∫
C

F⃗ ·dC⃗+
∫
C1

F⃗ ·dC⃗1+
∫
C2

F⃗ ·dC⃗2+
∫
C3

F⃗ ·dC⃗3 = 0,

where: C1 = {x = 0, y ∈ [− 10
√
100,−r]}, C2 = {x = 0, y ∈ [r, 10

√
100]}, C3 = {x2 + y2 = r2, x ≤ 0}.

(Note that the curves C,C1, C2, C3 bound a simply connected region.)

Note that F⃗ |x=0 = (y,0)
y2 . Therefore

∫
C1

F⃗ · dC⃗1 = 0 =
∫
C2

F⃗ · dC⃗2.

Then
∫
C

F⃗ · dC⃗ = −
∫
C3

F⃗ · dC⃗3, here C3 is oriented clockwise. We get:

∫
C

F⃗ · dC⃗ = −
∫
C3

(y,−x)

x2 + y2
· dC⃗3 =

3π
2∫

π
2

(r · sin(ϕ),−r · cos(ϕ))
r2

· (−r · sin(ϕ), r · cos(ϕ))dϕ = −π.

6. Solution 1. Think of the curve C as the (oriented) boundary of the surface S = {x2+y2+z2 ≤ 1, y+z = −1}. This surface
is a disc. The (prescribed) orientation of the curve determines the direction of the normal to the disc: N = (0, 1, 1). The



2

field has continuous partial derivatives on S, therefore we can use Stokes theorem. Note that rot(F⃗ ) = (1, 1, 1) thus we
have: ∮

C

F⃗ · dr⃗ =

∫∫
S

(1, 1, 1) · dS⃗ =

∫∫
S

(1, 1, 1) · (0, 1, 1)

|(0, 1, 1)|
dS =

√
2

∫∫
S

1 · dS =
√
2 ·

(
area of S

)
.

The area of S can be computed in various ways. For example, its diameter is the distance between the points (0, 0,−1),
(0,−1, 0), hence the radius equals 1√

2
. Altogether we get:∮

C

F⃗ · dr⃗ =
√
2 · π · 1

2
.

Solution 2. We use the following parametrization of the curve: γ(t) = (x(t), y(t), z(t)) =
(

cos(t)√
2

, sin(t)−1
2 ,− sin(t)+1

2

)
.

Note that γ′(t) =
(
− sin(t)√

2
, cos(t)

2 ,− cos(t)
2

)
and F (γ(t)) =

(
− sin(t)− 1, cos(t)√

2
, cos(t)√

2
+ sin(t)−1

2

)
.

Therefore the scalar product of these two vectors is: F (γ(t)) · γ′(t) = sin2(t)√
2

+ sin(t)√
2

− sin(t) cos(t)
4 + cos(t)

4 .

Substitute this into the integral:
∮
C

F⃗ · dr⃗ =
2π∫

t=0

F (γ(t)) · γ′(t) dt = . . ..

The integral over sin(t) vanishes, and so do the integrals over cos(t) and sin(t) cos(t) = sin(2t)
2 . We’re finally left with∮

C

F⃗ · dr⃗ = . . . =

∫ 2π

t=0

sin2(t)√
2

dt =
1

2
√
2

∫ 2π

t=0

1− cos(2t) dt =
π√
2
.


