
Solutions to Moed.C, Hedva.3.EE, 16.07.2020

1. As v⃗ · (u⃗ × w⃗) ̸= 0 the vectors v⃗, u⃗, w⃗ are linearly independent (do not lie in one plane). Therefore their
end-points are the vertices of a triangle, while ||v⃗− u⃗||, ||v⃗− w⃗||, ||u⃗− w⃗|| are the lengths of the sides of this
triangle.

This triangle is non-degenerate, i.e. the vertices do no lie on one line. Therefore none of ||v⃗− u⃗||, ||v⃗− w⃗||,
||u⃗− w⃗|| is the sum of two others.

2. The function f(x, y, z) is periodic in z, with the period 2π. Therefore instead of considering the unbounded
set ∂U ⊂ R3 we can restrict to ∂U ∩ {0 ≤ z ≤ 2π} ⊂ R3. This set is closed and bounded, thus compact.
Therefore f attains its minimum/maximum on ∂U ∩ {0 ≤ z ≤ 2π}, and hence on ∂U as well.

As f(x, y, z) = g(x, y)+sin(z), the minimum of f occurs when z ∈ −π
2 +2πZ and g(x, y) has the minimum.

The maximum occurs when z ∈ π
2 + 2πZ and g(x, y) has the maximum. Therefore the question is reduced

to min/max of g(x, y) = x2 + y2 on the boundary of the subset {x2

a2 + y2

b2 < 1, x2

b2 + y2

a2 < 1} ⊂ R2. This is
the intersection of two ellipses, the boundary consists of the four arcs.

• Suppose the arc is a part of x2

a2 + y2

b2 = 1. Then g on this arc is: x2 + b2(1− x2

a2 ) = b2 − x2( b
2

a2 − 1). As

b > a the minimum of this expression is achieved at x2 = a2, while the maximum at x = 0.

Note that the points (0,±b) do not satisfy the condition x2

b2 + y2

a2 < 1. The points (±a, 0) do satisfy it,

and g(±a, 0) = a2.

• Suppose the arc is a part of x2

b2 + y2

a2 = 1. Then g on this arc is: x2 + a2(1− x2

b2 ) = a2 + x2(1− a2

b2 ). As

b > a the minimum of this expression is achieved at x2 = 0, while the maximum at x2 = b2.

Note that the points (±b, 0) do not satisfy the condition x2

a2 + y2

b2 < 1. The points (0,±a) do satisfy it,

and g(0,±a) = a2.

• It remains to check the intersection points of the two ellipses: x2

a2 + y2

b2 = 1 = x2

b2 + y2

a2 . These satisfy

x2 = y2 = a2b2

a2+b2 , and g(∗, ∗) = 2a2b2

a2+b2 .

3. The surface is naturally parameterized by x, y. These parameters vary in the region {x2+y2+2y ≤ 2020} ⊂
R2, which is a shifted disc: {x2 + (y + 1)2 ≤ 2021} ⊂ R2. Therefore, for any function h holds:

¨
h · dS =

¨
h ·

√
1 + (

∂z

∂x
)2 + (

∂z

∂y
)2dxdy =

¨
h
√
2dxdy.

Thus

Area =

¨

S

1dS =

¨

{x2+y2+2y≤2020}

√
2 · dxdy =

√
2 ·

(
area of the disc of radius

√
2021

)
=

√
2 · π · (

√
2021)2.

4. See question 3 of Moed.B, 2020.02.27.

5. The integration path bounds the disc, denote it D. We apply Stokes theorem:
¸
C

F⃗ · dr⃗ =
˜
D

(1,−1, 1) · dS⃗.

By the assumption on the direction of the path, the (unit) normal to the disc is: (0,1,−1)√
2

. Therefore:

˛

C

F⃗ · dr⃗ = −
√
2 · (the area of D).

The diameter of D is obtained as the distance between the points (0, 0, 0) and (0, 1, 1), which is
√
2.

Therefore
¸
C

F⃗ · dr⃗ = −
√
2π( 1√

2
)2.

6. Note that div( (x,y,z)

(x2+y2+z2)
3
2
) = 0. Therefore we can use Gauss theorem to replace the surface by a simpler

one, as far as the field remains differentiable in the whole body of integration.
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Solution 1. First we note:
˜

|x|3+|y|3+|z|3=1
z≥0

(x,y,z)·dS⃗
(x2+y2+z2)

3
2
=

˜
|x|3+|y|3+|z|3=1

z≤0

(x,y,z)·dS⃗
(x2+y2+z2)

3
2
, as both the field and

the normal are anti-symmetric under (x, y, z) ↔ (−x,−y,−z). Therefore¨

|x|3+|y|3+|z|3=1
z≥0

(x, y, z)

(x2 + y2 + z2)
3
2

· dS⃗ =
1

2

‹

|x|3+|y|3+|z|3=1

(x, y, z)

(x2 + y2 + z2)
3
2

· dS⃗.

To compute this later integral we would like to use Gauss theorem, but the field is not differentiable at
(0, 0, 0). Thus we use Gauss theorem for the body: {|x|3+ |y|3+ |z|3 ≤ 1, x2+y2+z2 ≥ ϵ2}. Here 0 < ϵ < 1

is a (small) constant. As div( (x,y,z)

(x2+y2+z2)
3
2
) = 0 we have:

1

2

‹

|x|3+|y|3+|z|3=1

(x, y, z)

(x2 + y2 + z2)
3
2

· dS⃗ = −1

2

‹

x2+y2+z2=ϵ2

(x, y, z)

(x2 + y2 + z2)
3
2

· dS⃗, with the inner normal.

For the later integral we note that x2 + y2 + z2 ≡ ϵ2 along the surface, thus

−1

2

‹

x2+y2+z2=ϵ2

(x, y, z)

(x2 + y2 + z2)
3
2

· dS⃗ = −1

2

‹

x2+y2+z2=ϵ2

(x, y, z)

ϵ3
· dS⃗ Gauss

==
1

2ϵ3

˚

x2+y2+z2≤ϵ2

3dV =
4π

2
.

Solution 2. We would like to replace the initial surface by the planar domain {|x|3 + |y|3 ≤ 1, z = 0}.
But this domain contains the point (0, 0, 0), where the field is not differentiable. Thus we replace the initial
surface by the union: { |x|3 + |y|3 ≤ 1, z = 0

x2 + y2 ≥ ϵ2

}
︸ ︷︷ ︸

S1

∪{x2 + y2 + z2 = ϵ2, z ≥ 0}︸ ︷︷ ︸
S2

.

As div( (x,y,z)

(x2+y2+z2)
3
2
) = 0 we have by Gauss theorem:

¨

|x|3+|y|3+|z|3=1
z≥0

(x, y, z) · dS⃗
(x2 + y2 + z2)

3
2

+

¨

S1

(x, y, z) · dS⃗
(x2 + y2 + z2)

3
2

+

¨

S2

(x, y, z) · dS⃗
(x2 + y2 + z2)

3
2

= 0.

In the later two integrals the normals are taken downstairs.

The normal to S1 is (0, 0,−1), therefore for the integral over S1 we have: (x, y, z) · dS⃗ = −zdS = 0, as
z = 0. Thus ¨

|x|3+|y|3+|z|3=1
z≥0

(x, y, z) · dS⃗
(x2 + y2 + z2)

3
2

=

¨

S2

(x, y, z) · dS⃗
(x2 + y2 + z2)

3
2

, with the normal upstairs.

The later integral is computed in various ways, e.g.¨

S2

(x, y, z) · dS⃗
(x2 + y2 + z2)

3
2

=

¨

S2

r⃗ · r⃗
rdS

r3
=

¨

S2

dS

r2
=

1

ϵ2

¨

S2

dS =
area of S2

ϵ2
=

1

ϵ2
2πϵ2.


