1. As $\vec{v} \cdot(\vec{u} \times \vec{w}) \neq 0$ the vectors $\vec{v}, \vec{u}, \vec{w}$ are linearly independent (do not lie in one plane). Therefore their end-points are the vertices of a triangle, while $\|\vec{v}-\vec{u}\|,\|\vec{v}-\vec{w}\|,\|\vec{u}-\vec{w}\|$ are the lengths of the sides of this triangle.

This triangle is non-degenerate, i.e. the vertices do no lie on one line. Therefore none of $\|\vec{v}-\vec{u}\|,\|\vec{v}-\vec{w}\|$, $\|\vec{u}-\vec{w}\|$ is the sum of two others.
2. The function $f(x, y, z)$ is periodic in z, with the period 2π. Therefore instead of considering the unbounded set $\partial \mathcal{U} \subset \mathbb{R}^{3}$ we can restrict to $\partial \mathcal{U} \cap\{0 \leq z \leq 2 \pi\} \subset \mathbb{R}^{3}$. This set is closed and bounded, thus compact. Therefore f attains its minimum/maximum on $\partial \mathcal{U} \cap\{0 \leq z \leq 2 \pi\}$, and hence on $\partial \mathcal{U}$ as well.

As $f(x, y, z)=g(x, y)+\sin (z)$, the minimum of f occurs when $z \in-\frac{\pi}{2}+2 \pi \mathbb{Z}$ and $g(x, y)$ has the minimum. The maximum occurs when $z \in \frac{\pi}{2}+2 \pi \mathbb{Z}$ and $g(x, y)$ has the maximum. Therefore the question is reduced to \min / \max of $g(x, y)=x^{2}+y^{2}$ on the boundary of the subset $\left\{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}<1, \frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}<1\right\} \subset \mathbb{R}^{2}$. This is the intersection of two ellipses, the boundary consists of the four arcs.

- Suppose the arc is a part of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Then g on this arc is: $x^{2}+b^{2}\left(1-\frac{x^{2}}{a^{2}}\right)=b^{2}-x^{2}\left(\frac{b^{2}}{a^{2}}-1\right)$. As $b>a$ the minimum of this expression is achieved at $x^{2}=a^{2}$, while the maximum at $x=0$.
Note that the points $(0, \pm b)$ do not satisfy the condition $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}<1$. The points $(\pm a, 0)$ do satisfy it, and $g(\pm a, 0)=a^{2}$.
- Suppose the arc is a part of $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$. Then g on this arc is: $x^{2}+a^{2}\left(1-\frac{x^{2}}{b^{2}}\right)=a^{2}+x^{2}\left(1-\frac{a^{2}}{b^{2}}\right)$. As $b>a$ the minimum of this expression is achieved at $x^{2}=0$, while the maximum at $x^{2}=b^{2}$.
Note that the points $(\pm b, 0)$ do not satisfy the condition $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}<1$. The points $(0, \pm a)$ do satisfy it, and $g(0, \pm a)=a^{2}$.
- It remains to check the intersection points of the two ellipses: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1=\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}$. These satisfy $x^{2}=y^{2}=\frac{a^{2} b^{2}}{a^{2}+b^{2}}$, and $g(*, *)=\frac{2 a^{2} b^{2}}{a^{2}+b^{2}}$.

3. The surface is naturally parameterized by x, y. These parameters vary in the region $\left\{x^{2}+y^{2}+2 y \leq 2020\right\} \subset$ \mathbb{R}^{2}, which is a shifted disc: $\left\{x^{2}+(y+1)^{2} \leq 2021\right\} \subset \mathbb{R}^{2}$. Therefore, for any function h holds:

$$
\iint h \cdot d S=\iint h \cdot \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d x d y=\iint h \sqrt{2} d x d y
$$

Thus
Area $=\iint_{S} 1 d S=\iint_{\left\{x^{2}+y^{2}+2 y \leq 2020\right\}} \sqrt{2} \cdot d x d y=\sqrt{2} \cdot($ area of the disc of radius $\sqrt{2021})=\sqrt{2} \cdot \pi \cdot(\sqrt{2021})^{2}$.
4. See question 3 of Moed.B, 2020.02.27.
5. The integration path bounds the disc, denote it D. We apply Stokes theorem: $\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{D}(1,-1,1) \cdot d \vec{S}$. By the assumption on the direction of the path, the (unit) normal to the disc is: $\frac{(0,1,-1)}{\sqrt{2}}$. Therefore:

$$
\oint_{C} \vec{F} \cdot d \vec{r}=-\sqrt{2} \cdot(\text { the area of } D) .
$$

The diameter of D is obtained as the distance between the points $(0,0,0)$ and $(0,1,1)$, which is $\sqrt{2}$.
Therefore $\oint_{C} \vec{F} \cdot d \vec{r}=-\sqrt{2} \pi\left(\frac{1}{\sqrt{2}}\right)^{2}$.
6. Note that $\operatorname{div}\left(\frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right)=0$. Therefore we can use Gauss theorem to replace the surface by a simpler one, as far as the field remains differentiable in the whole body of integration.

Solution 1. First we note: $\iint_{\substack{|x|^{3}+|y|^{3}+|z|^{3}=1 \\ z \geq 0}} \frac{(x, y, z) \cdot d \vec{S}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}=\iint_{\substack{|x|^{3}+|y|^{3}+|z|^{3}=1 \\ z \leq 0}} \frac{(x, y, z) \cdot d \vec{S}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}$, as both the field and the normal are anti-symmetric under $(x, y, z) \leftrightarrow(-x,-y,-z)$. Therefore

$$
\iint_{\substack{|x|^{3}+|y|^{3}+|z|^{3}=1 \\ z \geq 0}} \frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \cdot d \vec{S}=\frac{1}{2} \oiint_{|x|^{3}+|y|^{3}+|z|^{3}=1} \frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \cdot d \vec{S}
$$

To compute this later integral we would like to use Gauss theorem, but the field is not differentiable at $(0,0,0)$. Thus we use Gauss theorem for the body: $\left\{|x|^{3}+|y|^{3}+|z|^{3} \leq 1, x^{2}+y^{2}+z^{2} \geq \epsilon^{2}\right\}$. Here $0<\epsilon<1$ is a (small) constant. As $\operatorname{div}\left(\frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right)=0$ we have:

$$
\frac{1}{2} \oiint_{|x|^{3}+|y|^{3}+|z|^{3}=1} \frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \cdot d \vec{S}=-\frac{1}{2} \oiint_{x^{2}+y^{2}+z^{2}=\epsilon^{2}} \frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \cdot d \vec{S}, \quad \text { with the inner normal. }
$$

For the later integral we note that $x^{2}+y^{2}+z^{2} \equiv \epsilon^{2}$ along the surface, thus

$$
-\frac{1}{2} \oiint_{x^{2}+y^{2}+z^{2}=\epsilon^{2}} \frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \cdot d \vec{S}=-\frac{1}{2} \oiint_{x^{2}+y^{2}+z^{2}=\epsilon^{2}} \frac{(x, y, z)}{\epsilon^{3}} \cdot d \vec{S} \stackrel{\text { Gauss }}{=} \frac{1}{2 \epsilon^{3}} \iiint_{x^{2}+y^{2}+z^{2} \leq \epsilon^{2}} 3 d V=\frac{4 \pi}{2} .
$$

Solution 2. We would like to replace the initial surface by the planar domain $\left\{|x|^{3}+|y|^{3} \leq 1, z=0\right\}$. But this domain contains the point $(0,0,0)$, where the field is not differentiable. Thus we replace the initial surface by the union:

$$
\underbrace{\left\{\begin{array}{l}
|x|^{3}+|y|^{3} \leq 1, z=0 \\
x^{2}+y^{2} \geq \epsilon^{2}
\end{array}\right\}}_{S_{1}} \cup \underbrace{\left\{x^{2}+y^{2}+z^{2}=\epsilon^{2}, z \geq 0\right\}}_{S_{2}}
$$

As $\operatorname{div}\left(\frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right)=0$ we have by Gauss theorem:

$$
\iint_{\substack{3^{3} \\|x|^{3}+|y|^{3}+|z|^{3}=1 \\ z \geq 0}} \frac{(x, y, z) \cdot d \vec{S}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}+\iint_{S_{1}} \frac{(x, y, z) \cdot d \vec{S}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}+\iint_{S_{2}} \frac{(x, y, z) \cdot d \vec{S}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}=0
$$

In the later two integrals the normals are taken downstairs.
The normal to S_{1} is $(0,0,-1)$, therefore for the integral over S_{1} we have: $(x, y, z) \cdot d \vec{S}=-z d S=0$, as $z=0$. Thus

$$
\iint_{\substack{|x|^{3}+|y|^{3}+|z|^{3}=1 \\ z \geq 0}} \frac{(x, y, z) \cdot d \vec{S}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}=\iint_{S_{2}} \frac{(x, y, z) \cdot d \vec{S}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}, \quad \text { with the normal upstairs. }
$$

The later integral is computed in various ways, e.g.

$$
\iint_{S_{2}} \frac{(x, y, z) \cdot d \vec{S}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}=\iint_{S_{2}} \frac{\vec{r} \cdot \frac{\vec{r}}{r} d S}{r^{3}}=\iint_{S_{2}} \frac{d S}{r^{2}}=\frac{1}{\epsilon^{2}} \iint_{S_{2}} d S=\frac{\text { area of } S_{2}}{\epsilon^{2}}=\frac{1}{\epsilon^{2}} 2 \pi \epsilon^{2}
$$

