
HOMEWORK SHEET 1: SOLUTIONS

INTRODUCTION TO COMPLEX ANALYSIS FOR ELECTRIC ENGINEERING

1. Question 1

a) For every α ∈ R and n ∈ N, we know that

cos(nα) + isin(nα) = enαi = (cos(α) + isin(α))n =
n∑

k=0

(
n

k

)

ik cosn−k(α) sink(α).

If n = 4, we get

cos(4α) = Re(e4αi) =

(
4
0

)

cos4(α) +

(
4
2

)

i2 cos2(α) sin2(α) +

(
4
4

)

i4 sin4(α)

= cos4(α) − 6 cos2(α) sin2(α) + sin4(α),

while for n = 5 we get

sin(5α) = Im(e5αi) =
1
i

[(
5
1

)

i cos4(α) sin(α) +

(
5
3

)

i3 cos2(α) sin3(α) +

(
5
5

)

i5 sin5(α)

]

= 5 cos4(α) sin(α) − 10 cos2(α) sin2(α) + sin5(α).

b) For every n ≥ 0 and φ ∈ R:

n∑

k=0

cos(kφ) =
n∑

k=0

Re(eikφ) = Re

(
n∑

k=0

eikφ

)

= Re

(
n∑

k=0

(eiφ)k

)

and
n∑

k=0

sin(kφ) =
n∑

k=0

Im(eikφ) = Im

(
n∑

k=0

eikφ

)

= Im

(
n∑

k=0

(eiφ)k

)

.

The last sum is a trigonometric sum and hence we have the formula

n∑

k=0

(eiφ)k =
1 − (eiφ)n+1

1 − eiφ
=

(1 − (eiφ)n+1)(1 − e−iφ)
(1 − eiφ)(1 − e−iφ)

=
1 − e−iφ − ei(n+1)φ + einφ

2 − (eiφ + e−iφ)
=

1 − e−iφ − ei(n+1)φ + einφ

2 − 2cos(φ)
,

so
n∑

k=0

cos(kφ) = Re

(
1 − e−iφ − ei(n+1)φ + einφ

2 − 2cos(φ)

)

=
1 − cos(φ) − cos((n + 1)φ) + cos(nφ)

2 − 2cos(φ)
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and
n∑

k=0

sin(kφ) = Im

(
1 − e−iφ − ei(n+1)φ + einφ

2 − 2cos(φ)

)

=
sin(φ) − sin((n + 1)φ) + sin(nφ)

2 − 2cos(φ)
.

c) Let p(x) ∈ R[x], so p(x) = a0 + a1x + . . . + anxn, where a0, a1, . . . , an ∈ R.
If z0 ∈ C, then

p(z0) = 0 ⇐⇒
n∑

k=0

akzk
0 = 0 ⇐⇒

n∑

k=0

akz0
k =

n∑

k=0

ak∙z0
k =

n∑

k=0

akzk
0 = 0 ⇐⇒ p(z0) = 0.

2. Question 2:

a) Let a ∈ C and define the mapping ψa : C → C by ψa(z) = a ∙ z. Write a in
its Cartesian representation

a = xa + iya, xa, ya ∈ R

then for every z = x + iy ∈ C:

ψa(z) = (xa + iya)(x + iy) = (xax − yay) + i(xay + yax).

Thus ψa : R2 → R2 is the following

ψa(x, y) = (xax − yay, xay + yax), ∀(x, y) ∈ R2

and the representative matrix of ψa with respect to the standard basis in R2 is

A :=
[
ψa

]
=

(
xa −ya

ya xa

)

.

• Suppose |a| = 1, thus

AAt =

(
xa −ya

ya xa

)(
xa ya

−ya xa

)

=

(
x2

a + y2
a 0

0 y2
a + x2

a

)

=

(
|a|2 0
0 |a|2

)

= I2

and also
det(A) = x2

a + y2
a = |a|2 = 1.

• As |a| = 1, a is of the form a = eiθa for some θa ∈ [0, 2π). Thus for every
z = reiθ ∈ C:

ψa(z) = eiθa ∙ reiθ = rei(θ+θa)

so ψa(z) just rotates the point z by θa degrees, while keeping the same distance
from 0.

b) Define the conjugation mapping τ : C → C, by τ(z) = z. It is easily seen
that

τ(z1 + z2) = z1 + z2 = z1 + z2 = τ(z1) + τ(z2), ∀z1, z2 ∈ C

and
τ(αz) = αz = ατ (z), ∀α ∈ C, z ∈ C,

so τ is is a linear mapping over the field R, but not over C.

• For every z = x + iy ∈ C, we have τ(z) = x − iy, so τ : R2 → R2 is of the
form

τ(x, y) = (x,−y)
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so its representative matrix of τ with respect to the standard basis in R2 is

B :=
[
τ
]

=

(
1 0
0 −1

)

,

B ∙ Bt =

(
1 0
0 −1

)(
1 0
0 −1

)

= I2 and det(B) = −1.

• For every z = reiθ ∈ C, we have τ(z) = re−iθ so this is the point which is
symmetric to z with respect to the x−axis (the real line).

3. Question 3:

Let (zn) be a sequence in C and z ∈ C. Recall that zn → z if and only if
|zn − z| → 0.

a)(i) True:

zn → z ⇐⇒
∣
∣Re(zn) − Re(z) + i(Im(zn) − Im(z))

∣
∣ = |zn − z| → 0

⇐⇒ (Re(zn) − Re(z))2 + (Im(zn) − Im(z))2 → 0.

Now, it is not hard to see that for every two sequences of real numbers (xn) and
(yn), we have

x2
n + y2

n → 0 ⇐⇒ xn → 0 and yn → 0.

One direction is simply arithmetics, while the other one follows from the Sandwich
rule and the fact that 0 ≤ x2

n, y2
n ≤ x2

n + y2
n. Therefore,

zn → z ⇐⇒ Re(zn) − Re(z) → 0 and Im(zn) − Im(z) → 0

⇐⇒ Re(zn) → Re(z) and Im(zn) → Im(z)

⇐⇒ (Re(zn), Im(zn)) → (Re(z), Im(z)).

b)(i) • If |z| < 1, then limn→∞ |zn − 0| = limn→∞ |z|n = 0, so limn→∞ zn = 0.
• If |z| > 1, then limn→∞ |zn| = limn→∞ |z|n = ∞ and limn→∞ zn = ∞.
• If |z| = 1 and suppose that zn → `, then clearly zn+1 → ` and by arithmetics
zn+1 → z ∙ `. By the uniqueness of the limit (of a converging sequence) we get
z` = `, but zn → ` implies that 1 = |zn| → |`|, i.e., that |`| = 1 =⇒ ` 6= 0, so z = 1.
So: if z = 1, then limn→∞ zn = 1 and if |z| = 1, z 6= 1, then zn does not converge.

b)(iii) We show the limit does not exist:

f(z) =
z2 − z2

z2 + z2 =
z2 − z2

z2 + z2
=

2iIm(z2)
2Re(z2)

= i
Im(z2)
Re(z2)

,

so if zn = n → ∞ then f(zn) = 0. On the other hand, if wn = n + in → ∞ then
f(wn) = i. Therefore the limit limz→∞ f(z) does not exist.

b)(iv) Let

f(z) =
Re(z) ∙ Im(z)2

Re(z)2 + Im(z)4
.

Let zn = 1
n → 0, then f(zn) = 0. On the other hand, let wn = 1

n2 + i 1
n → 0, then

f(wn) =
1

n2 ∙ 1
n2

1
n4 + 1

n4

=
1
2
,
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therefore the limit limz→0 f(z) does not exist.

4. Question 4:

Recall that a set X ⊂ C is open if and only if for every z ∈ X, there exists ε > 0
such that Ballε(z) ⊂ X. A set X ⊂ C is closed if ∂X ⊂ X.

b) True: A set X ⊂ C is open if and only if C \ X is closed.

• Assume X is open. Let z ∈ ∂(C \ X) and suppose that z /∈ C \ X, i.e., that
z ∈ X. As X is open, there exists ε > 0 such that Ballε(z) ⊂ X, so

Ballε(z) ∩ (C \ X) = ∅ =⇒ z /∈ ∂(C \ X)

and this is a contradiction. So ∂(C \ X) ⊂ C \ X, meaning that C \ X is closed.

• Assume C \ X is closed. Let z ∈ X, so z /∈ C \ X and since ∂(C \ X) ⊂ C \ X,
we know that z /∈ ∂(C \ X). Then there exists ε > 0 such that

Ballε(z) ∩ (C \ X) = ∅ or Ballε(z) ∩ X = ∅,

but z ∈ Ballε(z) ∩ X, which implies that

Ballε(z) ∩ (C \ X) = ∅ =⇒ Ballε(z) ⊂ X,

i.e., we shoed that X is open.

c)(i) • As X ⊂ C, it is easily seen that X is open in C if and only if X is open in
C̄.
• However, this is not true for closed sets: Let

X = R≥0 = {z ∈ C : Im(z) = 0, Re(z) ≥ 0}.

The set X is closed in C, as C \X is open in C, but X is not closed in C̄: for every
r > 0, we have

{z : |z| > r} ∩ X 6= ∅ and {z : |z| > r} ∩ (C̄ \ X) 6= ∅,

which means that ∞ ∈ ∂(X), but ∞ /∈ X, hence X is not closed in C̄.
• A much simpler example is X = C: which is closed in C but not in C̄.


