HW10: SOLUTIONS

1. QUESTION 1.

a) Let $f \in \mathcal{O}(\mathbb{C})$ be 1-1. Let us explore the behavior of f at ∞ . If $z = \infty$ is an essential singularity of f, then g(z) = f(1/z) has an essential singularity at z = 0 and g is analytic in $\mathbb{C} \setminus \{0\}$, since f is entire. From the Picard's theorem we must have

$$g(Ball_1(0)^*) = \mathbb{C} \text{ or } \mathbb{C} \setminus \{z_0\} \text{ for some } z_0 \in \mathbb{C}.$$

Therefore, g is not 1-1 (it is enough to take 2 more points outside the ball to see that) and hence f is not 1-1, which is a contradiction.

So, $z = \infty$ is not an essential singularity of f, hence $\lim_{z\to\infty} f(z)$ exists (finite of ∞) and by question 2-d we must have that f is a polynomial. As f is 1-1, it must have only one zero, so it is of the form $f(z) = a_0(z-z_0)^m$. However, if m > 1, we can take

$$z_1 = z_0 + e^{2\pi i/m}, \ z_2 = z_0 + e^{4\pi i/m}$$

satisfying: $z_1 \neq z_2$ but $f(z_1) = f(z_2)$, which contradicts the assumption. So $m \leq 2$, as required.

b) Let $f, g \in \mathcal{O}(\mathbb{C})$ such that $|f(z)| \leq |g(z)|$ for all $z \in \mathbb{C}$. If $f \equiv 0$, then setting c = 0 yields f(z) = cg(z). Otherwise, let z_0 be a zero of g(z), say of order m, thus $f(z_0) = 0$ as well; say z_0 is a zero of f(z) of order n, thus we have

$$g(z) = (z - z_0)^m \tilde{g}(z), \ f(z) = (z - z_0)^n \tilde{f}(z)$$

where $\tilde{g}, \tilde{f} \in \mathcal{O}(\mathbb{C})$ and $\tilde{f}(z_0), \tilde{g}(z_0) \neq 0$. If n < m, we get $|f(z)| \le |g(z)| \Longrightarrow |(z - z_0)^n \tilde{f}(z)| \le |(z - z_0)^m \tilde{g}(z)| \Longrightarrow |\tilde{f}(z)| \le |(z - z_0)^{m-n} \tilde{g}(z)|$

but for $z = z_0$ we get $|\tilde{f}(z_0)| \leq 0 \implies \tilde{f}(z_0) = 0$ which is a contradiction. So we must have $n \geq m$. Define the function

$$h(z) = \frac{f(z)}{g(z)},$$

we showed that for every z_0 that is a zero of g(z) we must have that z_0 is also a zero of f(z) with $ord_f(z_0) \ge ord_g(z_0)$, thus z_0 is a removable singularity point of h(z); thus h is analytic in except for removable points, hence h is entire and also bounded by 1, therefore $h \equiv c$ with $|c| \le 1$.

d) No! If such a function exists, then a pole at ∞ means that $\lim_{z\to\infty} f(z) = \infty$, which is equivalent to

$$\lim_{z \to 0} f(1/z) = \infty.$$

However, there exists a sequence of points $z_n = 1/n \rightarrow 0$ such that $f(1/z_n) = 0$, which is a contradiction to the limit being equal to ∞ .

f) Suppose $z = z_0$ is an essential singularity point of f, thus using Picard's theorem

on $Ball_{\epsilon/2}(z_0)^*$, we get that f is not 1-1 in $Ball_{\epsilon}(z_0)^*$. Therefore, $z = z_0$ must be a pole of f of order $m \ge 2$ or a zero of order $m \ge 2$.

• If $z = z_0$ is a zero of f of order $m \ge 2$, then one can write $f(z) = (z - z_0)^m g(z)$, where g is analytic in $Ball_{\epsilon}(z_0)$ and $g(z_0) \ne 0$. Then we must have that $g(z) \ne 0$ for all $z \in Ball_{\delta}(z_0)$ for some $\delta \le \epsilon$, and moreover that $g(Ball_{\delta}(z_0)) \subseteq Ball_{\alpha}(g(z_0))$ for some $\alpha > 0$. One can choose δ small enough such that $0 \notin Ball_{\alpha}(g(z_0))$, thus we can define the analytic function $\sqrt[m]{g(z)}$ that is analytic in $Ball_{\delta}(z_0)$. Define

$$h(z) := (z - z_0) \sqrt[m]{g(z)},$$

that is analytic in $Ball_{\delta}(z_0)$, satisfying $h(z)^m = f(z)$ for any $z \in Ball_{\delta}(z_0)$. Fix a point $z_1 \in Ball_{\delta}(z_0)^*$, so from the open mapping theorem we know that there exists a point $z_2 \in Ball_{\delta}(z_0)$ such that $h(z_2) = e^{2\pi i/m}h(z_1)$; thus we have

$$f(z_2) = h(z_2)^m = e^{2\pi i}h(z_1)^m = f(z_1)$$

and as $m \ge 2$ we have $z_1 \ne z_2$, as $h(z_2) \ne h(z_1)$. So f is not 1 - 1.

• Finally, if $z = z_0$ is a pole of f of order $m \ge 2$, thus $\lim_{z\to z_0} f(z) = \infty$ which implies that there exists $\beta \le \epsilon$ such that $f(z) \ne 0$ for all $z \in Ball_{\beta}(z_0)^*$. Then define

$$\widetilde{f}(z) := \frac{1}{f(z)}$$

that is analytic in $Ball_{\beta}(z_0)^*$ and it has a removable singularity at $z = z_0$; moreover, it has a zero of order m at $z = z_0$. Now, we can use what we already proved for \tilde{f} and that is that \tilde{f} is not 1 - 1, which clearly implies that f is not 1 - 1.

2. Question 2.

a) If the image of f is not dense in \mathbb{C} , it means there exists $\omega \in \mathbb{C}$ and $\epsilon > 0$ such that $|f(z) - \omega| > \epsilon$, for every z in the domain of f. Define

$$g(z) := \frac{1}{f(z) - \omega}$$

Clearly g is analytic at all points z where f is analytic; moreover, if z_0 is a singularity point of f, it must be a pole (as f is meromorphic) so $\lim_{z\to z_0} f(z) = \infty$ and hence $\lim_{z\to z_0} g(z) = 0$, meaning that z_0 is a removable singularity point of g. So g is entire (analytic in \mathbb{C} except for removable singularities) and also bounded, as $|g(z)| < \frac{1}{\epsilon}$, therefore by Liouville's theorem g is constant and then it is easily seen that f is constant as well; contradiction to the assumption that f is not.

b) Suppose f is meromorphic in \mathcal{U} , \mathcal{U} is bounded and suppose that $x \subset \mathcal{U}$ is closed. So X is closed and bounded!

If f has infinitely many zeros in X, denoted $(z_n)_{n=0}^{\infty}$, then this sequence has a subsequence that converges (using the B–W theorem as X is closed and bounded) to a point in X, so we can apply the uniqueness theorem to get f should be 0 on all points!

So f must have finitely many zeros in X. Suppose next that f has infinitely many poles in X. Define the function g(z) := 1/f(z), which is meromorphic because the singularities of g are exactly the singularities of f and the zeros of f: the zeros of f become poles of g, while the poles of g become removable singularities of g. So g has only poles, so it is meromorphic. But g has infinitely many zeros (if z_0 is a pole of f(z), then $\lim_{z\to z_0} f(z) = \infty$ which implies that $\lim_{z\to z_0} g(z) = 0$ so

HW10: SOLUTIONS

 z_0 is removable singularity of g and it is a zero of g) and this is possible (as proved in part a) only when g is constant and then f is also a constant.

c) Let f me meromorphic in $\overline{\mathbb{C}}$. That means that $z = \infty$ is either removable singularity or an isolated pole. If there are infinitely many singularity points of f, say $(z_n)_{n=0}^{\infty}$, then we have two cases: If (z_n) is bounded, then it has a subsequence which converge to say $\omega \in \mathbb{C}$, which makes ω a non-isolated singularity point of f, that is a contradiction as f is meromorphic.

Otherwise, (z_n) is not bounded, which means it has a subsequence that converges to ∞ , which makes $z = \infty$ a non-isolated singularity point of f; contradiction to f being meromorphic once again.

d) See Targil 1 in Tirgul 12.

3. QUESTION 3.

a)i) $f(z) = \frac{z^2 + z - 1}{z^2(z-1)}$. Singularities are z = 0, 1.

• $z_0 = 0$ is a pole of order 2, as $f(z) = \frac{1}{z^2}g_0(z)$ where $g_0(z) = \frac{z^2+z-1}{z-1}$ is analytic at 0; thus

$$Res_{z=0}(f) = \lim_{z \to 0} g_0(z)' = \lim_{z \to 0} \frac{(z-1)(2z+1) - (z^2+z-1)}{(z-1)^2} = 0.$$

• $z_1 = 1$ is a simple pole, as $f(z) = \frac{1}{z-1}g_1(z)$ where $g_1(z) = \frac{z^2+z-1}{z^2}$ is analytic at 1; thus

$$Res_{z=1}(f) = \lim_{z \to 1} g_1(z) = 1.$$

a)ii) f(z) = zⁿ sin(1/z). Singularities of f are z = 0.
Around z₀ = 0, the Laurent expansion of f at z = 0 is

$$f(z) = z^n \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)! z^{2k+1}} = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)! z^{2k+1-n}},$$

thus

$$Res_{z=0}(f) = \begin{cases} \frac{(-1)^{n/2}}{(n+1)!} & : 2 \mid n \\ 0 & : 2 \nmid n. \end{cases}$$

•
$$Res_{z=\infty}(f) = -Res_{z=0}(\frac{1}{z^2}f(1/z)) = -Res_{z=0}(\frac{\sin(z)}{z^{n+2}})$$
, as
$$\frac{\sin(z)}{z^{n+2}} = \sum_{k=1}^{\infty} \frac{(-1)^k z^{2k+1-n-2}}{(2k+1)!},$$

we get that $2k - n - 1 = -1 \iff 2k = n$, so

$$Res_{z=\infty}(f) = -\begin{cases} \frac{(-1)^{n/2}}{(n+1)!} & : 2 \mid n \\ 0 & : 2 \nmid n. \end{cases}$$

b)i) If $f \in \mathcal{O}(Ball_{\epsilon}(0))$, then the only singularity of $g(z) := \sin(1/z)f(z)$ in $Ball_{\epsilon/2}(0)$ is z = 0; therefore by the residue theorem

$$\frac{1}{2\pi i} \int_{|z|=\epsilon/2} f(z) \sin(1/z) dz = Res_{z=0}(g).$$

It is left to compute the residue at 0: write the Taylor expansion of f(z) around 0:

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \Longrightarrow g(z) = \Big(\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)! z^{2k+1}}\Big)\Big(\sum_{n=0}^{\infty} a_n z^n\Big),$$

so the coefficient of 1/z (and hence the residue) is given by

1

$$Res_{z=0}(g) = \sum_{k=0}^{\infty} \frac{(-1)^k a_{2k}}{(2k+1)!}.$$

So the statement is false and a counter example will be: any analytic f(z) for which their Taylor coefficients are given by $a_0, a_2 \neq 0$ and $a_{2k} = 0$ for k > 1, since we will get $Res_{z=0}(g) = a_0 - a_2/6 \neq a_0 = f(0)$.

b)iii) Suppose f(-z) = -f(z) for any z. As z_0 is an isolated singularity point of f, we can write its Laurent expansion at z_0 :

$$f(z) = \sum_{m=1}^{\infty} \frac{b_m}{(z - z_0)^m} + a_0 + \sum_{n=1}^{\infty} a_n (z - z_0)^n,$$

so in a neighborhood of $-z_0$ we get that the Laurent expansion of f at $z = z_0$ is

$$f(z) = -f(-z) = \sum_{m=1}^{\infty} \frac{(-1)^{m+1} b_m}{(z+z_0)^m} - a_0 + \sum_{n=1}^{\infty} (-1)^{n+1} a_n (z+z_0)^n.$$

Therefore, $Res_{z=z_0}(f) = b_1 = Res_{z=-z_0}(f)$.

If we know that f(z) = f(-z), then similarly we get $Res_{z=z_0}(f) = -Res_{z=-z_0}(f)$.

b)iv) Suppose that f(-z) = f(z) and that $0, \infty$ are isolated singularity point of f. Write the Laurent expansion of f at 0,

$$f(z) = \sum_{m=1}^{\infty} \frac{b_m}{z^m} + \sum_{n=0}^{\infty} a_n z^n,$$

so (by the uniqueness of the coefficients in the Laurent expansion)

$$f(z) = f(-z) = \sum_{m=1}^{\infty} \frac{(-1)^m b_m}{z^m} + \sum_{n=0}^{\infty} (-1)^n a_n z^n,$$

which implies that $b_m = 0$ and $a_n = 0$ for every $2 \mid m, n$. In particular, $Res_{z=0}(f) = b_1 = 0$ and also $Res_{z=\infty}(f) = -a_1 = 0$.

c) Write

$$f(z) = \sum_{m=1}^{\infty} \frac{b_m}{z^m} + \sum_{n=0}^{\infty} a_n z^n,$$

 \mathbf{SO}

$$f(cz) = \sum_{m=1}^{\infty} \frac{b_m}{c^m z^m} + \sum_{n=0}^{\infty} a_n c^n z^n$$

and thus $Res_{z=0}(f(cz)) = \frac{b_1}{c} = \frac{1}{c}Res_{z=0}(f).$

d)i) Let $f(z) = \frac{e^z}{\tan(z)}$. The (non removable) singularities of f are exactly the points z such that $\sin(z) = 0$; inside the box we have exactly 3 of them: $z = -\pi, 0, \pi$ and

HW10: SOLUTIONS

all of them are simple poles, with $Res_{z=z_0}(f) = Res_{z=z_0}(\frac{\cos(z)e^z}{\sin(z)}) = e^{z_0}$. By the residue theorem

$$\int_{\partial B} f(z)dz = 2\pi i (Res_{z=-\pi}(f) + Res_{z=0}(f) + Res_{z=\pi}(f)) = 2\pi i (e^{-\pi} + 1 + e^{\pi}).$$

d)ii) Let $f(z) = \frac{Log(z)}{\sin^3(z-2i)}$. Clearly in $Ball_1(2i)$ the function f is analytic except for at the singularity point z = 2i which is a pole of order 3, so

$$Res_{z=2i}(f) = \frac{1}{2} \lim_{z \to 2i} \left(\frac{(z-2i)^3 Log(z)}{\sin^3(z-2i)} \right)^{(2)} = \dots$$

and by the residue theorem

$$\int_{|z-2i|=1} f(z)dz = 2\pi i \operatorname{Res}_{z=2i}(f).$$

d)iii) The function $f(z) = \frac{\sin(1/z)}{z-1}$ has 2 singularity points inside $Ball_2(0)$ which are z = 0, 1. Therefore, the residue theorem tells us that

$$\int_{|z|=2} f(z)dz = 2\pi i (Res_{z=0}(f) + Res_{z=1}(f)).$$

Clearly z = 1 is a simple pole of f, thus

$$Res_{z=1}(f) = \lim_{z \to 1} (z-1)f(z) = \sin(1),$$

while z = 0 is an essential singularity of f, so we compute the residue by finding the Laurent expansion at z = 0 of the function and just taking the coefficient of 1/z; here is the computation

$$\sin(\frac{1}{z}) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)! z^{2n+1}}, \ \frac{1}{z-1} = -\sum_{m=0}^{\infty} z^m$$
$$\implies f(z) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^{n+1}}{(2n+1)!} z^{m-2n-1},$$

therefore the coefficient of 1/z is given by (choosing m = 2n)

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2n+1)!} = -\sin(1);$$

 \mathbf{SO}

$$\int_{|z|=2} f(z)dz = 2\pi i(\sin(1) - \sin(1)) = 0.$$

A shorter way to solve this is using the residue at ∞ , as z = 0, 1 are the only singularities of f and they are inside $Ball_2(0)$, we have

$$\int_{|z|=2} f(z)dz = -2\pi i Res_{z=\infty}(f) = 2\pi i Res_{z=0}(\frac{1}{z^2}f(1/z)) = Res_{z=0}(\frac{\sin(z)}{z-z^2}) = 0.$$

d)iv) Let $f(z) = \frac{z}{e^{2\pi i z^2} - 1}$. The singularities of f are exactly $z = \pm \sqrt{k}$ for every $k \in \mathbb{N}$, they are all simple poles, with

$$Res_{z=\pm\sqrt{k}}(f) = \frac{z}{4\pi i z e^{2\pi i z^2}} \mid_{z=\pm\sqrt{k}} = \frac{1}{4\pi i}.$$

Therefore, from the residue theorem we have

$$\int_{|z|=R} f(z)dz = 2\pi i \sum_{k:\sqrt{k} \le R} \operatorname{Res}_{z=\pm\sqrt{k}}(f) = 2\pi i (2n+1)\frac{1}{4\pi i} = \frac{2n+1}{2}.$$

e) For every |z| = 1 we know that $1/\overline{z} = z$, therefore

$$\int_{\gamma} e^{1/\overline{z}} + e^{-1/\overline{z}} dz = \int_{\gamma} e^{z} + e^{-z} dz = |_{r}^{-r} e^{z} - e^{-z} = 2(e^{-r} - e^{r}).$$

4. QUESTION 4.

i) Let $f(x) = \frac{\cos^2(x)}{1 - a \sin^2(x)}$. This is a symmetric function, therefore

$$\int_0^{\pi} f(x)dx = \frac{1}{2} \int_{-\pi}^{\pi} f(x)dx = \frac{1}{2} \int_0^{2\pi} f(x)dx.$$

Next, write

Next, write

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}, \ \sin(x) = \frac{e^{ix} - e^{-ix}}{2i}, \ z = e^{ix} :$$

$$\int_{0}^{2\pi} f(x)dx = \frac{1}{4} \int_{|z|=1} \frac{(z+1/z)^2}{1-\frac{a}{4}(z-1/z)^2} \frac{dz}{iz} = \frac{1}{i} \int_{|z|=1} \frac{(z^2+1)^2}{z(4z^2-a(z^2-1)^2)} dz.$$
As
$$4z^2 - a(z^2-1)^2 = (2z - \sqrt{a}(z^2-1))(2z + \sqrt{a}(z^2-1))$$

we get 4 points which are singularities- it remains the find these points and decide which of them lies inside $Ball_1(0)$ and finally calculate the residues at these points. ii)

$$I := \int_{-\pi}^{\pi} \frac{\cos(nx)}{a - \cos(x)} dx = Re\left(\int_{-\pi}^{\pi} \frac{e^{inx}}{a - \cos(x)} dx\right) = Re\left(\int_{|z|=1}^{\pi} \frac{z^n dz}{iz(a - \frac{1}{2}(z + \frac{1}{z}))} dz\right)$$
$$= Re\left(\frac{2}{i}\int_{|z|=1}\frac{z^n}{2az - z^2 - 1} dz\right) = Re\left(\frac{-2}{i}\int_{|z|=1}\frac{z^n}{(z - (a + \sqrt{a^2 - 1}))(z - (a - \sqrt{a^2 - 1}))} dz\right)$$

as a > 1, we know that $a + \sqrt{a^2 - 1} > 1$ and that $0 < a - \sqrt{a^2 - 1} < 1$, therefore there is only 1 singularity (that is a simple pole) in $\{|z| < 1\}$; by the residue theorem:

$$I = Re\left(\frac{-2}{i}2\pi i Res_{z=a-\sqrt{a^2-1}}\left(\frac{z^n}{2az-z^2-1}\right)\right)$$
$$= Re\left(-4\pi\left(\frac{z^n}{2a-2z}\right)|_{z=a-\sqrt{a^2-1}}\right) = -2\pi\frac{(a-\sqrt{a^2-1})^n}{\sqrt{a^2-1}}$$
(...)

(iii)

$$I := \int_0^{2\pi} \frac{dt}{|ae^{it} - b|^4} = \int_0^{2\pi} \frac{dt}{(ae^{it} - b)^2(ae^{-it} - b)^2} = \int_0^{2\pi} \frac{e^{2it}dt}{(ae^{it} - b)^2(a - be^{it})^2}$$
$$= \int_{|z|=1} \frac{z}{(az - b)^2(a - bz)^2} \frac{dz}{i}$$

as 0 < a < b, among the 2 singularities $z = \frac{b}{a}, \frac{a}{b}$, only $z = \frac{a}{b}$ is in $\{|z| < 1\}$ and it is a pole of order 2, therefore by the residue theorem

$$I := 2\pi Res_{z=a/b} \left(\frac{z}{(az-b)^2(a-bz)^2} \right) = 2\pi \lim_{z \to a/b} \left(\frac{z}{b^2(az-b)^2} \right)^{(1)} = \dots = \frac{2\pi(a^2+b^2)}{(b^2-a^2)^3}.$$

6