HW10: SOLUTIONS

1. QUESTION 1.

a) Let f € O(C) be 1 — 1. Let us explore the behavior of f at co. If z = 0o is an
essential singularity of f, then g(z) = f(1/z) has an essential singularity at z = 0
and g is analytic in C\ {0}, since f is entire. From the Picard’s theorem we must
have

g(Ball1(0)*) = C or C\ {z} for some 2, € C.

Therefore, g is not 1 — 1 (it is enough to take 2 more points outside the ball to see
that) and hence f is not 1 — 1, which is a contradiction.

So, z = oo is not an essential singularity of f, hence lim,_,, f(z) exists (finite of
oo) and by question 2-d we must have that f is a polynomial. As f is 1 — 1, it must
have only one zero, so it is of the form f(z) = ao(z — z0)™. However, if m > 1, we

can take

2mi/m 4mi/m
)

z1 =20 +e€ Zg = 2ot €
satisfying: z; # 2z but f(z1) = f(22), which contradicts the assumption. So m < 2,

as required.

b) Let f,g € O(C) such that |f(z)| < |g(2)| for all z € C. If f = 0, then set-
ting ¢ = 0 yields f(z) = cg(z). Otherwise, let zg be a a zero of g(z), say of order
m, thus f(z9) = 0 as well; say zg is a zero of f(z) of order n, thus we have

9(2) = (2 = 20)"G(2), f(2) = (z = 20)" [ (2)
where g, fé O(C) and f(zo),ﬁ(zo) #0. If n <m, we get

IF(2)] < lg(2)] == [(z = 20)" (2)] < |(z = 20)"9(2)| = [[(2)] < [(z = 20)" "g(2)]

but for z = zy we get |f(20)] < 0 = f(20) = 0 which is a contradiction. So we
must have n > m. Define the function

n =18,

9(2)
we showed that for every zp that is a zero of g(z) we must have that zy is also a
zero of f(z) with ord(z0) > ordy(zo), thus zy is a removable singularity point of

h(z); thus h is analytic in except for removable points, hence h is entire and also
bounded by 1, therefore h = ¢ with |¢|] < 1.

d) No! If such a function exists, then a pole at co means that lim, ., f(z) = oo,
which is equivalent to

lim f(1/2) = oc.

However, there exists a sequence of points z, = 1/n— 0 such that f(1/z,) = 0,
which is a contradiction to the limit being equal to oco.

f) Suppose z = zj is an essential singularity point of f, thus using Picard’s theorem
1
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on Ball.j3(z0)*, we get that f is not 1 — 1 in Ball.(z0)*. Therefore, z = 2y must
be a pole of f of order m > 2 or a zero of order m > 2.

o If z = 2 is a zero of f of order m > 2, then one can write f(z) = (z—20)™g(2),
where ¢ is analytic in Ball.(zo) and g(z9) # 0. Then we must have that g(z) # 0
for all z € Balls(zg) for some ¢ < €, and moreover that g(Balls(z9)) C Balls(g(20))
for some e > 0. One can choose ¢ small enough such that 0 ¢ Ball,(g(20)), thus
we can define the analytic function %/g(z) that is analytic in Balls(zp). Define

h(z) := (2 = 20) ¥/ 9(2),

that is analytic in Balls(zo), satisfying h(z)™ = f(z) for any z € Balls(zp). Fix
a point z1 € Balls(20)*, so from the open mapping theorem we know that there
exists a point zo € Balls(zo) such that h(zo) = €2™/™h(z;); thus we have

fz2) = h(22)™ = ' h(z21)™ = f(21)
and as m > 2 we have z1 # 29, as h(z2) # h(z1). So fisnot 1 — 1.
e Finally, if z = zg is a pole of f of order m > 2, thus lim,_,,, f(z) = co which
implies that there exists 8 < € such that f(z) # 0 for all z € Ballg(zp)*. Then

define B )
f(z) = )

that is analytic in Ballg(zo)* and it has a removable singularity at z = zp; moreover,
it has a zero of order m at z = zg. Now, we can use what we already proved for f
and that is that f is not 1 — 1, which clearly implies that f is not 1 — 1.

2. QQUESTION 2.

a) If the image of f is not dense in C, it means there exists w € C and € > 0

such that |f(z) —w| > ¢, for every z in the domain of f. Define
1
9= oy —e

Clearly g is analytic at all points z where f is analytic; moreover, if z; is a singu-
larity point of f, it must be a pole (as f is meromorphic) so lim,_,,, f(z) = oo and
hence lim,_,, g(z) = 0, meaning that zy is a removable singularity point of g. So
g is entire (analytic in C except for removable singularities) and also bounded, as
lg(2)] < %7 therefore by Liouville’s theorem ¢ is constant and then it is easily seen
that f is constant as well; contradiction to the assumption that f is not.

b) Suppose f is meromorphic in U, U is bounded and suppose that x C U is
closed. So X is closed and bounded!

If f has infinitely many zeros in X, denoted (z,)5%, then this sequence has a
subsequence that converges (using the B-W theorem as X is closed and bounded)
to a point in X, so we can apply the uniqueness theorem to get f should be 0 on
all points!

So f must have finitely many zeros in X. Suppose next that f has infinitely
many poles in X. Define the function g(z) := 1/f(z), which is meromorphic be-
cause the singularities of g are exactly the singularities of f and the zeros of f: the
zeros of f become poles of g, while the poles of g become removable singularities
of g. So g has only poles, so it is meromorphic. But ¢ has infinitely many zeros (if
2o is a pole of f(z), then lim,_,,, f(z) = oo which implies that lim,_, ., g(z) = 0 so
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2o is removable singularity of g and it is a zero of g) and this is possible (as proved
in part a) only when ¢ is constant and then f is also a constant.

c) Let f me meromorphic in C. That means that z = oo is either removable
singularity or an isolated pole. If there are infinitely many singularity points of f,
say (2,)5%, then we have two cases: If (z,) is bounded, then it has a subsequence
which converge to say w € C, which makes w a non-isolated singularity point of f,
that is a contradiction as f is meromorphic.

Otherwise, (z,) is not bounded, which means it has a subsequence that converges
to oo, which makes z = co a non-isolated singularity point of f; contradiction to f
being meromorphic once again.

d) See Targil 1 in Tirgul 12.

3. QUESTION 3.

a)i) f(z) = 22{;:5 Singularities are z = 0, 1.

ez = 0 is a pole of order 2, as f(z) = % go(z) where go(z) =
0; thus

2 . .
z+2=1 g analytic at
P

(z=1)2z+1)— (22 +2-1)

_ 1 " _
Res.—o(f) = lim go(2) = lim e =0.
ez = 1 is a simple pole, as f(z) = Zilgl(z) where g1(z) = 22';5_1 is analytic at

1; thus
Res,—1(f) = lﬂgl(z) =1.

a)ii) f(z) = z"sin(1/z). Singularities of f are z = 0.
e Around zy = 0, the Laurent expansion of f at z =0 is

n . (_1)k . (_1)k
f(z) =2 Z W = Z (2k + 1)122k+1=n"

k=0 k=0

thus

CU 9 n

Res,—o(f) = {O(n+1)! i

o Res.—oo(f) = —Resoco( L f(1/2)) = —Res.—o(3242)), as

sin(z) i (—1)kz2kt1-n=2
o T2 k)

we get that 2k —n—1=—-1 < 2k =n, so
(=nn/?

CO2 gy,
Res._ — (n+1)!
w=oolf) {0 :2¢n.

b)i) If f € O(Ball.(0)), then the only singularity of g(z) := sin(1/z)f(z) in
Ball,5(0) is z = 0; therefore by the residue theorem
1

210 J)z)=e/2

f(z)sin(1/z)dz = Res.—o(g).
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It is left to compute the residue at 0: write the Taylor expansion of f(z) around 0:

:Tianz"ﬁg(Z)Z (iW)(Zan )

so the coefficient of 1/z (and hence the residue) is given by

oo

& (D) kag
Res.—o(g) = kZ:O 2k + 1)

So the statement is false and a counter example will be: any analytic f(z) for which
their Taylor coefficients are given by ag, az # 0 and agr = 0 for k > 1, since we will

get Res,—o(g) = ao — az/6 # ag = f(0).

b)iii) Suppose f(—z) = —f(z) for any z. As zp is an isolated singularity point
of f, we can write its Laurent expansion at zg:

f(z) = Z(Z_bzo)m+ao+zan(2—zo)n7

so in a neighborhood of —zg we get that the Laurent expansion of f at z = zg is

o) = —fe =3 C o SNyt (2 4 2,

(z 4+ z9)™

m=1 n=1

m=1 n=1

Therefore, Res,—.,(f) = by = Res,—_.,(f).
If we know that f(z) = f(—=z), then similarly we get Res,—.,(f) = —Res.—_,,(f).

b)iv) Suppose that f(—z) = f(z) and that 0,00 are isolated singularity point
of f. Write the Laurent expansion of f at 0,

f(z) = Zi""zan )

m=1

so (by the uniqueness of the coefficients in the Laurent expansion)

CEYESED pe L 38
m=1 n=0

which implies that b,, = 0 and a,, = 0 for every 2 | m,n. In particular, Res,—o(f) =
by =0 and also Res,—o(f) = —a; = 0.

c) Write
[ee) bm oo N
f(Z) = Z ZW+ZG”Z )
m=1 n=0
S0
oo b o0
_ m
flez) = mz::l o + ;anc z
and thus Res,—o(f(cz)) = %1 = 1Res.—o(f).

d)i) Let f(2) = tan(z) The (non removable) singularities of f are exactly the points
z such that sin(z) = 0; inside the box we have exactly 3 of them: z = —7, 0,7 and
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all of them are simple poles, with Res,—., (f) = Res.—,, (S53<) = ¢%0. By the

sin(z)
residue theorem

f(2)dz = 2mi(Res,——(f) + Res.—o(f) + Res.—(f)) =2mi(e ™ +1+€").
B

d)ii) Let f(z) = _Los(z) _ Clearly in Bally(24) the function f is analytic except

sin®(2—217) °
for at the singularity point z = 2¢ which is a pole of order 3, so

1. /(z—2i)*Log(z)\®
L _z 1 N S JINT = ...
R65z72z(f) 2 Zl_)Héll ( sin3(z — 22) )

and by the residue theorem
/ f(2)dz = 2wiRes ,—o2;(f).
|z—2i|=1

d)iii) The function f(z) = % has 2 singularity points inside Ballz(0) which

are z = 0, 1. Therefore, the residue theorem tells us that
/ F(2)dz = 2mi(Res.—o(f) + Rese—i(f)).
|z]=2

Clearly z =1 is a simple pole of f, thus
Res,—1(f) = liml(z —1)f(2) =sin(1),

while z = 0 is an essential singularity of f, so we compute the residue by finding
the Laurent expansion at z = 0 of the function and just taking the coefficient of
1/z; here is the computation

N o S,
sm(;) a Z (2n + 1)lz2nt17 2 1 - Z i

n=0 m=0

:>f ZZ 2n+1 m2n1

n=0 m=0

therefore the coefficient of 1/z is given by (choosing m = 2n)

n+1

Z 2n + ] = —sin(1);

SO
/ f(2)dz = 2mi(sin(1) —sin(1)) = 0.
|z|=2
A shorter way to solve this is using the residue at oo, as z = 0,1 are the only
singularities of f and they are inside Ballz(0), we have

sin(z)

/ , f(2)dz = —2miRes ,—(f) = QWiReszzo(Z%f(l/z)) Res,— 0( )=0.

d)iv) Let f(z) = 5Z—. The singularities of f are exactly z = +Vk for ev-

2miz 1
ery k € N, they are all simple poles, with

z 1
R = = —_—
esz:j:\/E(f) Amize2riz? |z:ﬂ:\/E A7
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Therefore, from the residue theorem we have

. . 1 2n+1
/ f(z)dz = 2mi Z Res,_, sz (f) = 2mi(2n + 1)R = n2 )
|2|=FR k:VE<R

e) For every |z| =1 we know that 1/Z = z, therefore

Y Y

4. QUESTION 4.

i) Let f(z) = % This is a symmetric function, therefore
™ 1 ™ 1 2m
flz)dz = = fl@)dx = = f(x)dx.
0 2 -7 2 0
Next, write ‘ A ‘ ‘
cos(z) = %, sin(z) = %, z=e":

27 . x_l (Z—|—]./Z)2 %_1 (Z2+].)2 3
0 (w)dz = 4/|Z_1 1-%(z—1/2)2 iz i/|z|_1 2(422 — a(22 — 1)2)d '

As
422 —a(z? —1)? = (22 — Va(z* — 1)) (22 + Va(z* — 1))
we get 4 points which are singularities- it remains the find these points and decide

which of them lies inside Ball;(0) and finally calculate the residues at these points.
if)

I = /_T; C%dm:}%e(/: a_e(z(x)dx) :Re(/|z|_1mdz)

Zn

2 z" -2
- Re(? /|Z_1 2az — 2% — 1dz> - RQ(T /|Z|_1 (z—(a+ Va2 =1))(z — (a — Va% - 1))dz)

as a > 1, we know that @ + va? —1 > 1 and that 0 < a — Va2 — 1 < 1, therefore
there is only 1 singularity (that is a simple pole) in {|]z| < 1}; by the residue
theorem:

-2 . z"
I= Re(T2MReSz:“"/aL1 (2az — 22— 1))

n

B z B (a — Va2 -1)"
7R6(747r<2a—2z) |Z=a—w2—1)*72ﬂ 21

(iii)

[ /ZW dt _ /27\' dt B /27\' 62itdt
=y Tat b = Jy et bR =B~y {aet = Ba—be)?

_ / z dz
 Jz=1 (az = b)2(a—b2)? i

as 0 < a < b, among the 2 singularities z = 2, ¢, only z = £ isin {|z| < 1} and it

is a pole of order 2, therefore by the residue theorem

I:= QWResz:a/b( - ) =27 lim

z m 2m(a? + b?)
(az —b)%(a — bz)? z—a/b (b2(az - b)2) N

RGETE



