
HW10: SOLUTIONS

1. Question 1.

a) Let f ∈ O(C) be 1− 1. Let us explore the behavior of f at ∞. If z = ∞ is an
essential singularity of f , then g(z) = f(1/z) has an essential singularity at z = 0
and g is analytic in C \ {0}, since f is entire. From the Picard’s theorem we must
have

g(Ball1(0)∗) = C or C \ {z0} for some z0 ∈ C.

Therefore, g is not 1 − 1 (it is enough to take 2 more points outside the ball to see
that) and hence f is not 1 − 1, which is a contradiction.

So, z = ∞ is not an essential singularity of f , hence limz→∞ f(z) exists (finite of
∞) and by question 2-d we must have that f is a polynomial. As f is 1−1, it must
have only one zero, so it is of the form f(z) = a0(z − z0)m. However, if m > 1, we
can take

z1 = z0 + e2πi/m, z2 = z0 + e4πi/m

satisfying: z1 6= z2 but f(z1) = f(z2), which contradicts the assumption. So m ≤ 2,
as required.

b) Let f, g ∈ O(C) such that |f(z)| ≤ |g(z)| for all z ∈ C. If f ≡ 0, then set-
ting c = 0 yields f(z) = cg(z). Otherwise, let z0 be a a zero of g(z), say of order
m, thus f(z0) = 0 as well; say z0 is a zero of f(z) of order n, thus we have

g(z) = (z − z0)
mg̃(z), f(z) = (z − z0)

nf̃(z)

where g̃, f̃ ∈ O(C) and f̃(z0), g̃(z0) 6= 0. If n < m, we get

|f(z)| ≤ |g(z)| =⇒ |(z − z0)
nf̃(z)| ≤ |(z − z0)

mg̃(z)| =⇒ |f̃(z)| ≤ |(z − z0)
m−ng̃(z)|

but for z = z0 we get |f̃(z0)| ≤ 0 =⇒ f̃(z0) = 0 which is a contradiction. So we
must have n ≥ m. Define the function

h(z) =
f(z)
g(z)

,

we showed that for every z0 that is a zero of g(z) we must have that z0 is also a
zero of f(z) with ordf (z0) ≥ ordg(z0), thus z0 is a removable singularity point of
h(z); thus h is analytic in except for removable points, hence h is entire and also
bounded by 1, therefore h ≡ c with |c| ≤ 1.

d) No! If such a function exists, then a pole at ∞ means that limz→∞ f(z) = ∞,
which is equivalent to

lim
z→0

f(1/z) = ∞.

However, there exists a sequence of points zn = 1/n→ 0 such that f(1/zn) = 0,
which is a contradiction to the limit being equal to ∞.

f) Suppose z = z0 is an essential singularity point of f , thus using Picard’s theorem
1



2 HW10: SOLUTIONS

on Ballε/2(z0)∗, we get that f is not 1 − 1 in Ballε(z0)∗. Therefore, z = z0 must
be a pole of f of order m ≥ 2 or a zero of order m ≥ 2.

• If z = z0 is a zero of f of order m ≥ 2, then one can write f(z) = (z−z0)mg(z),
where g is analytic in Ballε(z0) and g(z0) 6= 0. Then we must have that g(z) 6= 0
for all z ∈ Ballδ(z0) for some δ ≤ ε, and moreover that g(Ballδ(z0)) ⊆ Ballα(g(z0))
for some α > 0. One can choose δ small enough such that 0 /∈ Ballα(g(z0)), thus
we can define the analytic function m

√
g(z) that is analytic in Ballδ(z0). Define

h(z) := (z − z0)
m
√

g(z),

that is analytic in Ballδ(z0), satisfying h(z)m = f(z) for any z ∈ Ballδ(z0). Fix
a point z1 ∈ Ballδ(z0)∗, so from the open mapping theorem we know that there
exists a point z2 ∈ Ballδ(z0) such that h(z2) = e2πi/mh(z1); thus we have

f(z2) = h(z2)
m = e2πih(z1)

m = f(z1)

and as m ≥ 2 we have z1 6= z2, as h(z2) 6= h(z1). So f is not 1 − 1.
• Finally, if z = z0 is a pole of f of order m ≥ 2, thus limz→z0 f(z) = ∞ which

implies that there exists β ≤ ε such that f(z) 6= 0 for all z ∈ Ballβ(z0)∗. Then
define

f̃(z) :=
1

f(z)
that is analytic in Ballβ(z0)∗ and it has a removable singularity at z = z0; moreover,
it has a zero of order m at z = z0. Now, we can use what we already proved for f̃

and that is that f̃ is not 1 − 1, which clearly implies that f is not 1 − 1.

2. Question 2.

a) If the image of f is not dense in C, it means there exists ω ∈ C and ε > 0
such that |f(z) − ω| > ε, for every z in the domain of f . Define

g(z) :=
1

f(z) − ω
.

Clearly g is analytic at all points z where f is analytic; moreover, if z0 is a singu-
larity point of f , it must be a pole (as f is meromorphic) so limz→z0 f(z) = ∞ and
hence limz→z0 g(z) = 0, meaning that z0 is a removable singularity point of g. So
g is entire (analytic in C except for removable singularities) and also bounded, as
|g(z)| < 1

ε , therefore by Liouville’s theorem g is constant and then it is easily seen
that f is constant as well; contradiction to the assumption that f is not.

b) Suppose f is meromorphic in U , U is bounded and suppose that x ⊂ U is
closed. So X is closed and bounded!

If f has infinitely many zeros in X, denoted (zn)∞n=0, then this sequence has a
subsequence that converges (using the B–W theorem as X is closed and bounded)
to a point in X, so we can apply the uniqueness theorem to get f should be 0 on
all points!

So f must have finitely many zeros in X. Suppose next that f has infinitely
many poles in X. Define the function g(z) := 1/f(z), which is meromorphic be-
cause the singularities of g are exactly the singularities of f and the zeros of f : the
zeros of f become poles of g, while the poles of g become removable singularities
of g. So g has only poles, so it is meromorphic. But g has infinitely many zeros (if
z0 is a pole of f(z), then limz→z0 f(z) = ∞ which implies that limz→z0 g(z) = 0 so
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z0 is removable singularity of g and it is a zero of g) and this is possible (as proved
in part a) only when g is constant and then f is also a constant.

c) Let f me meromorphic in C. That means that z = ∞ is either removable
singularity or an isolated pole. If there are infinitely many singularity points of f ,
say (zn)∞n=0, then we have two cases: If (zn) is bounded, then it has a subsequence
which converge to say ω ∈ C, which makes ω a non-isolated singularity point of f ,
that is a contradiction as f is meromorphic.

Otherwise, (zn) is not bounded, which means it has a subsequence that converges
to ∞, which makes z = ∞ a non-isolated singularity point of f ; contradiction to f
being meromorphic once again.

d) See Targil 1 in Tirgul 12.

3. Question 3.

a)i) f(z) = z2+z−1
z2(z−1) . Singularities are z = 0, 1.

•z0 = 0 is a pole of order 2, as f(z) = 1
z2 g0(z) where g0(z) = z2+z−1

z−1 is analytic at
0; thus

Resz=0(f) = lim
z→0

g0(z)′ = lim
z→0

(z − 1)(2z + 1) − (z2 + z − 1)
(z − 1)2

= 0.

• z1 = 1 is a simple pole, as f(z) = 1
z−1g1(z) where g1(z) = z2+z−1

z2 is analytic at
1; thus

Resz=1(f) = lim
z→1

g1(z) = 1.

a)ii) f(z) = zn sin(1/z). Singularities of f are z = 0.
• Around z0 = 0, the Laurent expansion of f at z = 0 is

f(z) = zn
∞∑

k=0

(−1)k

(2k + 1)!z2k+1
=

∞∑

k=0

(−1)k

(2k + 1)!z2k+1−n
,

thus

Resz=0(f) =

{
(−1)n/2

(n+1)! : 2 | n

0 : 2 - n.

• Resz=∞(f) = −Resz=0( 1
z2 f(1/z)) = −Resz=0(

sin(z)
zn+2 ), as

sin(z)
zn+2

=
∞∑

k=1

(−1)kz2k+1−n−2

(2k + 1)!
,

we get that 2k − n − 1 = −1 ⇐⇒ 2k = n, so

Resz=∞(f) = −

{
(−1)n/2

(n+1)! : 2 | n

0 : 2 - n.

b)i) If f ∈ O(Ballε(0)), then the only singularity of g(z) := sin(1/z)f(z) in
Ballε/2(0) is z = 0; therefore by the residue theorem

1
2πi

∫

|z|=ε/2

f(z) sin(1/z)dz = Resz=0(g).
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It is left to compute the residue at 0: write the Taylor expansion of f(z) around 0:

f(z) =
∞∑

n=0

anzn =⇒ g(z) =
( ∞∑

k=0

(−1)k

(2k + 1)!z2k+1

)( ∞∑

n=0

anzn
)
,

so the coefficient of 1/z (and hence the residue) is given by

Resz=0(g) =
∞∑

k=0

(−1)ka2k

(2k + 1)!
.

So the statement is false and a counter example will be: any analytic f(z) for which
their Taylor coefficients are given by a0, a2 6= 0 and a2k = 0 for k > 1, since we will
get Resz=0(g) = a0 − a2/6 6= a0 = f(0).

b)iii) Suppose f(−z) = −f(z) for any z. As z0 is an isolated singularity point
of f , we can write its Laurent expansion at z0:

f(z) =
∞∑

m=1

bm

(z − z0)m
+ a0 +

∞∑

n=1

an(z − z0)
n,

so in a neighborhood of −z0 we get that the Laurent expansion of f at z = z0 is

f(z) = −f(−z) =
∞∑

m=1

(−1)m+1bm

(z + z0)m
− a0 +

∞∑

n=1

(−1)n+1an(z + z0)
n.

Therefore, Resz=z0(f) = b1 = Resz=−z0(f).
If we know that f(z) = f(−z), then similarly we get Resz=z0(f) = −Resz=−z0(f).

b)iv) Suppose that f(−z) = f(z) and that 0,∞ are isolated singularity point
of f . Write the Laurent expansion of f at 0,

f(z) =
∞∑

m=1

bm

zm
+

∞∑

n=0

anzn,

so (by the uniqueness of the coefficients in the Laurent expansion)

f(z) = f(−z) =
∞∑

m=1

(−1)mbm

zm
+

∞∑

n=0

(−1)nanzn,

which implies that bm = 0 and an = 0 for every 2 | m,n. In particular, Resz=0(f) =
b1 = 0 and also Resz=∞(f) = −a1 = 0.

c) Write

f(z) =
∞∑

m=1

bm

zm
+

∞∑

n=0

anzn,

so

f(cz) =
∞∑

m=1

bm

cmzm
+

∞∑

n=0

ancnzn

and thus Resz=0(f(cz)) = b1
c = 1

cResz=0(f).

d)i) Let f(z) = ez

tan(z) . The (non removable) singularities of f are exactly the points
z such that sin(z) = 0; inside the box we have exactly 3 of them: z = −π, 0, π and
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all of them are simple poles, with Resz=z0(f) = Resz=z0(
cos(z)ez

sin(z) ) = ez0 . By the
residue theorem
∫

∂B

f(z)dz = 2πi(Resz=−π(f) + Resz=0(f) + Resz=π(f)) = 2πi(e−π + 1 + eπ).

d)ii) Let f(z) = Log(z)
sin3(z−2i)

. Clearly in Ball1(2i) the function f is analytic except
for at the singularity point z = 2i which is a pole of order 3, so

Resz=2i(f) =
1
2

lim
z→2i

( (z − 2i)3Log(z)

sin3(z − 2i)

)(2)

= . . .

and by the residue theorem
∫

|z−2i|=1

f(z)dz = 2πiResz=2i(f).

d)iii) The function f(z) = sin(1/z)
z−1 has 2 singularity points inside Ball2(0) which

are z = 0, 1. Therefore, the residue theorem tells us that
∫

|z|=2

f(z)dz = 2πi(Resz=0(f) + Resz=1(f)).

Clearly z = 1 is a simple pole of f , thus

Resz=1(f) = lim
z→1

(z − 1)f(z) = sin(1),

while z = 0 is an essential singularity of f , so we compute the residue by finding
the Laurent expansion at z = 0 of the function and just taking the coefficient of
1/z; here is the computation

sin(
1
z
) =

∞∑

n=0

(−1)n

(2n + 1)!z2n+1
,

1
z − 1

= −
∞∑

m=0

zm

=⇒ f(z) =
∞∑

n=0

∞∑

m=0

(−1)n+1

(2n + 1)!
zm−2n−1,

therefore the coefficient of 1/z is given by (choosing m = 2n)
∞∑

n=0

(−1)n+1

(2n + 1)!
= − sin(1);

so ∫

|z|=2

f(z)dz = 2πi(sin(1) − sin(1)) = 0.

A shorter way to solve this is using the residue at ∞, as z = 0, 1 are the only
singularities of f and they are inside Ball2(0), we have
∫

|z|=2

f(z)dz = −2πiResz=∞(f) = 2πiResz=0(
1
z2

f(1/z)) = Resz=0(
sin(z)
z − z2

) = 0.

d)iv) Let f(z) = z
e2πiz2−1

. The singularities of f are exactly z = ±
√

k for ev-
ery k ∈ N, they are all simple poles, with

Resz=±
√

k(f) =
z

4πize2πiz2 |z=±
√

k=
1

4πi
.
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Therefore, from the residue theorem we have
∫

|z|=R

f(z)dz = 2πi
∑

k:
√

k≤R

Resz=±
√

k(f) = 2πi(2n + 1)
1

4πi
=

2n + 1
2

.

e) For every |z| = 1 we know that 1/z = z, therefore
∫

γ

e1/z + e−1/zdz =
∫

γ

ez + e−zdz = |−r
r ez − e−z = 2(e−r − er).

4. Question 4.

i) Let f(x) = cos2(x)
1−a sin2(x)

. This is a symmetric function, therefore
∫ π

0

f(x)dx =
1
2

∫ π

−π

f(x)dx =
1
2

∫ 2π

0

f(x)dx.

Next, write

cos(x) =
eix + e−ix

2
, sin(x) =

eix − e−ix

2i
, z = eix :

∫ 2π

0

f(x)dx =
1
4

∫

|z|=1

(z + 1/z)2

1 − a
4 (z − 1/z)2

dz

iz
=

1
i

∫

|z|=1

(z2 + 1)2

z(4z2 − a(z2 − 1)2)
dz.

As
4z2 − a(z2 − 1)2 = (2z −

√
a(z2 − 1))(2z +

√
a(z2 − 1))

we get 4 points which are singularities- it remains the find these points and decide
which of them lies inside Ball1(0) and finally calculate the residues at these points.
ii)

I :=
∫ π

−π

cos(nx)
a − cos(x)

dx = Re
(∫ π

−π

einx

a − cos(x)
dx
)

= Re
(∫

|z|=1

zndz

iz(a − 1
2 (z + 1

z ))
dz
)

= Re
(2

i

∫

|z|=1

zn

2az − z2 − 1
dz
)

= Re
(−2

i

∫

|z|=1

zn

(z − (a +
√

a2 − 1))(z − (a −
√

a2 − 1))
dz
)

as a > 1, we know that a +
√

a2 − 1 > 1 and that 0 < a −
√

a2 − 1 < 1, therefore
there is only 1 singularity (that is a simple pole) in {|z| < 1}; by the residue
theorem:

I = Re
(−2

i
2πiResz=a−

√
a2−1

( zn

2az − z2 − 1

))

= Re
(
− 4π

( zn

2a − 2z

)
|z=a−

√
a2−1

)
= −2π

(a −
√

a2 − 1)n

√
a2 − 1

.

(iii)

I :=
∫ 2π

0

dt

|aeit − b|4
=
∫ 2π

0

dt

(aeit − b)2(ae−it − b)2
=
∫ 2π

0

e2itdt

(aeit − b)2(a − beit)2

=
∫

|z|=1

z

(az − b)2(a − bz)2
dz

i

as 0 < a < b, among the 2 singularities z = b
a , a

b , only z = a
b is in {|z| < 1} and it

is a pole of order 2, therefore by the residue theorem

I := 2πResz=a/b

( z

(az − b)2(a − bz)2

)
= 2π lim

z→a/b

( z

b2(az − b)2

)(1)

= . . . =
2π(a2 + b2)
(b2 − a2)3

.


