HW10: SOLUTIONS

1. Question 1.

a) Let $f \in \mathcal{O}(\mathbb{C})$ be $1-1$. Let us explore the behavior of f at ∞. If $z=\infty$ is an essential singularity of f, then $g(z)=f(1 / z)$ has an essential singularity at $z=0$ and g is analytic in $\mathbb{C} \backslash\{0\}$, since f is entire. From the Picard's theorem we must have

$$
g\left(\operatorname{Ball}_{1}(0)^{*}\right)=\mathbb{C} \text { or } \mathbb{C} \backslash\left\{z_{0}\right\} \text { for some } z_{0} \in \mathbb{C}
$$

Therefore, g is not $1-1$ (it is enough to take 2 more points outside the ball to see that) and hence f is not $1-1$, which is a contradiction.

So, $z=\infty$ is not an essential singularity of f, hence $\lim _{z \rightarrow \infty} f(z)$ exists (finite of $\infty)$ and by question 2 -d we must have that f is a polynomial. As f is $1-1$, it must have only one zero, so it is of the form $f(z)=a_{0}\left(z-z_{0}\right)^{m}$. However, if $m>1$, we can take

$$
z_{1}=z_{0}+e^{2 \pi i / m}, z_{2}=z_{0}+e^{4 \pi i / m}
$$

satisfying: $z_{1} \neq z_{2}$ but $f\left(z_{1}\right)=f\left(z_{2}\right)$, which contradicts the assumption. So $m \leq 2$, as required.
b) Let $f, g \in \mathcal{O}(\mathbb{C})$ such that $|f(z)| \leq|g(z)|$ for all $z \in \mathbb{C}$. If $f \equiv 0$, then setting $c=0$ yields $f(z)=c g(z)$. Otherwise, let z_{0} be a a zero of $g(z)$, say of order m, thus $f\left(z_{0}\right)=0$ as well; say z_{0} is a zero of $f(z)$ of order n, thus we have

$$
g(z)=\left(z-z_{0}\right)^{m} \widetilde{g}(z), f(z)=\left(z-z_{0}\right)^{n} \widetilde{f}(z)
$$

where $\widetilde{g}, \widetilde{f} \in \mathcal{O}(\mathbb{C})$ and $\widetilde{f}\left(z_{0}\right), \widetilde{g}\left(z_{0}\right) \neq 0$. If $n<m$, we get
$|f(z)| \leq|g(z)| \Longrightarrow\left|\left(z-z_{0}\right)^{n} \widetilde{f}(z)\right| \leq\left|\left(z-z_{0}\right)^{m} \widetilde{g}(z)\right| \Longrightarrow|\widetilde{f}(z)| \leq\left|\left(z-z_{0}\right)^{m-n} \widetilde{g}(z)\right|$ but for $z=z_{0}$ we get $\left|\widetilde{f}\left(z_{0}\right)\right| \leq 0 \Longrightarrow \widetilde{f}\left(z_{0}\right)=0$ which is a contradiction. So we must have $n \geq m$. Define the function

$$
h(z)=\frac{f(z)}{g(z)}
$$

we showed that for every z_{0} that is a zero of $g(z)$ we must have that z_{0} is also a zero of $f(z)$ with $\operatorname{ord}_{f}\left(z_{0}\right) \geq \operatorname{ord}_{g}\left(z_{0}\right)$, thus z_{0} is a removable singularity point of $h(z)$; thus h is analytic in except for removable points, hence h is entire and also bounded by 1 , therefore $h \equiv c$ with $|c| \leq 1$.
d) No! If such a function exists, then a pole at ∞ means that $\lim _{z \rightarrow \infty} f(z)=\infty$, which is equivalent to

$$
\lim _{z \rightarrow 0} f(1 / z)=\infty
$$

However, there exists a sequence of points $z_{n}=1 / n \rightarrow 0$ such that $f\left(1 / z_{n}\right)=0$, which is a contradiction to the limit being equal to ∞.
f) Suppose $z=z_{0}$ is an essential singularity point of f, thus using Picard's theorem
on $\operatorname{Ball}_{\epsilon / 2}\left(z_{0}\right)^{*}$, we get that f is not $1-1$ in $\operatorname{Ball}_{\epsilon}\left(z_{0}\right)^{*}$. Therefore, $z=z_{0}$ must be a pole of f of order $m \geq 2$ or a zero of order $m \geq 2$.

- If $z=z_{0}$ is a zero of f of order $m \geq 2$, then one can write $f(z)=\left(z-z_{0}\right)^{m} g(z)$, where g is analytic in $\operatorname{Ball}_{\epsilon}\left(z_{0}\right)$ and $g\left(z_{0}\right) \neq 0$. Then we must have that $g(z) \neq 0$ for all $z \in \operatorname{Ball}_{\delta}\left(z_{0}\right)$ for some $\delta \leq \epsilon$, and moreover that $g\left(\operatorname{Ball}_{\delta}\left(z_{0}\right)\right) \subseteq \operatorname{Ball}_{\alpha}\left(g\left(z_{0}\right)\right)$ for some $\alpha>0$. One can choose δ small enough such that $0 \notin \operatorname{Ball}_{\alpha}\left(g\left(z_{0}\right)\right)$, thus we can define the analytic function $\sqrt[m]{g(z)}$ that is analytic in $\operatorname{Ball}_{\delta}\left(z_{0}\right)$. Define

$$
h(z):=\left(z-z_{0}\right) \sqrt[m]{g(z)}
$$

that is analytic in $\operatorname{Ball}_{\delta}\left(z_{0}\right)$, satisfying $h(z)^{m}=f(z)$ for any $z \in \operatorname{Ball}_{\delta}\left(z_{0}\right)$. Fix a point $z_{1} \in \operatorname{Ball}_{\delta}\left(z_{0}\right)^{*}$, so from the open mapping theorem we know that there exists a point $z_{2} \in \operatorname{Ball}_{\delta}\left(z_{0}\right)$ such that $h\left(z_{2}\right)=e^{2 \pi i / m} h\left(z_{1}\right)$; thus we have

$$
f\left(z_{2}\right)=h\left(z_{2}\right)^{m}=e^{2 \pi i} h\left(z_{1}\right)^{m}=f\left(z_{1}\right)
$$

and as $m \geq 2$ we have $z_{1} \neq z_{2}$, as $h\left(z_{2}\right) \neq h\left(z_{1}\right)$. So f is not $1-1$.

- Finally, if $z=z_{0}$ is a pole of f of order $m \geq 2$, thus $\lim _{z \rightarrow z_{0}} f(z)=\infty$ which implies that there exists $\beta \leq \epsilon$ such that $f(z) \neq 0$ for all $z \in \operatorname{Ball}_{\beta}\left(z_{0}\right)^{*}$. Then define

$$
\widetilde{f}(z):=\frac{1}{f(z)}
$$

that is analytic in $\operatorname{Ball}_{\beta}\left(z_{0}\right)^{*}$ and it has a removable singularity at $z=z_{0}$; moreover, it has a zero of order m at $z=z_{0}$. Now, we can use what we already proved for \tilde{f} and that is that \tilde{f} is not $1-1$, which clearly implies that f is not $1-1$.

2. Question 2.

a) If the image of f is not dense in \mathbb{C}, it means there exists $\omega \in \mathbb{C}$ and $\epsilon>0$ such that $|f(z)-\omega|>\epsilon$, for every z in the domain of f. Define

$$
g(z):=\frac{1}{f(z)-\omega}
$$

Clearly g is analytic at all points z where f is analytic; moreover, if z_{0} is a singularity point of f, it must be a pole (as f is meromorphic) so $\lim _{z \rightarrow z_{0}} f(z)=\infty$ and hence $\lim _{z \rightarrow z_{0}} g(z)=0$, meaning that z_{0} is a removable singularity point of g. So g is entire (analytic in \mathbb{C} except for removable singularities) and also bounded, as $|g(z)|<\frac{1}{\epsilon}$, therefore by Liouville's theorem g is constant and then it is easily seen that f is constant as well; contradiction to the assumption that f is not.
b) Suppose f is meromorphic in \mathcal{U}, \mathcal{U} is bounded and suppose that $x \subset \mathcal{U}$ is closed. So X is closed and bounded!

If f has infinitely many zeros in X, denoted $\left(z_{n}\right)_{n=0}^{\infty}$, then this sequence has a subsequence that converges (using the $\mathrm{B}-\mathrm{W}$ theorem as X is closed and bounded) to a point in X, so we can apply the uniqueness theorem to get f should be 0 on all points!

So f must have finitely many zeros in X. Suppose next that f has infinitely many poles in X. Define the function $g(z):=1 / f(z)$, which is meromorphic because the singularities of g are exactly the singularities of f and the zeros of f : the zeros of f become poles of g, while the poles of g become removable singularities of g. So g has only poles, so it is meromorphic. But g has infinitely many zeros (if z_{0} is a pole of $f(z)$, then $\lim _{z \rightarrow z_{0}} f(z)=\infty$ which implies that $\lim _{z \rightarrow z_{0}} g(z)=0$ so
z_{0} is removable singularity of g and it is a zero of g) and this is possible (as proved in part a) only when g is constant and then f is also a constant.
c) Let f me meromorphic in $\overline{\mathbb{C}}$. That means that $z=\infty$ is either removable singularity or an isolated pole. If there are infinitely many singularity points of f, say $\left(z_{n}\right)_{n=0}^{\infty}$, then we have two cases: If $\left(z_{n}\right)$ is bounded, then it has a subsequence which converge to say $\omega \in \mathbb{C}$, which makes ω a non-isolated singularity point of f, that is a contradiction as f is meromorphic.

Otherwise, $\left(z_{n}\right)$ is not bounded, which means it has a subsequence that converges to ∞, which makes $z=\infty$ a non-isolated singularity point of f; contradiction to f being meromorphic once again.
d) See Targil 1 in Tirgul 12.

3. Question 3.

a)i) $f(z)=\frac{z^{2}+z-1}{z^{2}(z-1)}$. Singularities are $z=0,1$.
$\bullet z_{0}=0$ is a pole of order 2 , as $f(z)=\frac{1}{z^{2}} g_{0}(z)$ where $g_{0}(z)=\frac{z^{2}+z-1}{z-1}$ is analytic at 0 ; thus

$$
\operatorname{Res}_{z=0}(f)=\lim _{z \rightarrow 0} g_{0}(z)^{\prime}=\lim _{z \rightarrow 0} \frac{(z-1)(2 z+1)-\left(z^{2}+z-1\right)}{(z-1)^{2}}=0 .
$$

- $z_{1}=1$ is a simple pole, as $f(z)=\frac{1}{z-1} g_{1}(z)$ where $g_{1}(z)=\frac{z^{2}+z-1}{z^{2}}$ is analytic at 1 ; thus

$$
\operatorname{Res}_{z=1}(f)=\lim _{z \rightarrow 1} g_{1}(z)=1
$$

a)ii) $f(z)=z^{n} \sin (1 / z)$. Singularities of f are $z=0$.

- Around $z_{0}=0$, the Laurent expansion of f at $z=0$ is

$$
f(z)=z^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!z^{2 k+1}}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!z^{2 k+1-n}}
$$

thus

$$
\operatorname{Res}_{z=0}(f)= \begin{cases}\frac{(-1)^{n / 2}}{(n+1)!} & : 2 \mid n \\ 0 & : 2 \nmid n\end{cases}
$$

- $\operatorname{Res}_{z=\infty}(f)=-\operatorname{Res}_{z=0}\left(\frac{1}{z^{2}} f(1 / z)\right)=-\operatorname{Res}_{z=0}\left(\frac{\sin (z)}{z^{n+2}}\right)$, as

$$
\frac{\sin (z)}{z^{n+2}}=\sum_{k=1}^{\infty} \frac{(-1)^{k} z^{2 k+1-n-2}}{(2 k+1)!}
$$

we get that $2 k-n-1=-1 \Longleftrightarrow 2 k=n$, so

$$
\operatorname{Res}_{z=\infty}(f)=- \begin{cases}\frac{(-1)^{n / 2}}{(n+1)!} & : 2 \mid n \\ 0 & : 2 \nmid n\end{cases}
$$

b)i) If $f \in \mathcal{O}\left(\operatorname{Ball}_{\epsilon}(0)\right)$, then the only singularity of $g(z):=\sin (1 / z) f(z)$ in $\operatorname{Ball}_{\epsilon / 2}(0)$ is $z=0$; therefore by the residue theorem

$$
\frac{1}{2 \pi i} \int_{|z|=\epsilon / 2} f(z) \sin (1 / z) d z=\operatorname{Res}_{z=0}(g)
$$

It is left to compute the residue at 0 : write the Taylor expansion of $f(z)$ around 0 :

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \Longrightarrow g(z)=\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!z^{2 k+1}}\right)\left(\sum_{n=0}^{\infty} a_{n} z^{n}\right)
$$

so the coefficient of $1 / z$ (and hence the residue) is given by

$$
\operatorname{Res}_{z=0}(g)=\sum_{k=0}^{\infty} \frac{(-1)^{k} a_{2 k}}{(2 k+1)!}
$$

So the statement is false and a counter example will be: any analytic $f(z)$ for which their Taylor coefficients are given by $a_{0}, a_{2} \neq 0$ and $a_{2 k}=0$ for $k>1$, since we will get $\operatorname{Res}_{z=0}(g)=a_{0}-a_{2} / 6 \neq a_{0}=f(0)$.
b)iii) Suppose $f(-z)=-f(z)$ for any z. As z_{0} is an isolated singularity point of f, we can write its Laurent expansion at z_{0} :

$$
f(z)=\sum_{m=1}^{\infty} \frac{b_{m}}{\left(z-z_{0}\right)^{m}}+a_{0}+\sum_{n=1}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

so in a neighborhood of $-z_{0}$ we get that the Laurent expansion of f at $z=z_{0}$ is

$$
f(z)=-f(-z)=\sum_{m=1}^{\infty} \frac{(-1)^{m+1} b_{m}}{\left(z+z_{0}\right)^{m}}-a_{0}+\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}\left(z+z_{0}\right)^{n}
$$

Therefore, $\operatorname{Res}_{z=z_{0}}(f)=b_{1}=\operatorname{Res}_{z=-z_{0}}(f)$.
If we know that $f(z)=f(-z)$, then similarly we get $\operatorname{Res}_{z=z_{0}}(f)=-\operatorname{Res}_{z=-z_{0}}(f)$.
b)iv) Suppose that $f(-z)=f(z)$ and that $0, \infty$ are isolated singularity point of f. Write the Laurent expansion of f at 0 ,

$$
f(z)=\sum_{m=1}^{\infty} \frac{b_{m}}{z^{m}}+\sum_{n=0}^{\infty} a_{n} z^{n}
$$

so (by the uniqueness of the coefficients in the Laurent expansion)

$$
f(z)=f(-z)=\sum_{m=1}^{\infty} \frac{(-1)^{m} b_{m}}{z^{m}}+\sum_{n=0}^{\infty}(-1)^{n} a_{n} z^{n}
$$

which implies that $b_{m}=0$ and $a_{n}=0$ for every $2 \mid m$, n. In particular, $\operatorname{Res}_{z=0}(f)=$ $b_{1}=0$ and also $\operatorname{Res}_{z=\infty}(f)=-a_{1}=0$.
c) Write

$$
f(z)=\sum_{m=1}^{\infty} \frac{b_{m}}{z^{m}}+\sum_{n=0}^{\infty} a_{n} z^{n}
$$

so

$$
f(c z)=\sum_{m=1}^{\infty} \frac{b_{m}}{c^{m} z^{m}}+\sum_{n=0}^{\infty} a_{n} c^{n} z^{n}
$$

and thus $\operatorname{Res}_{z=0}(f(c z))=\frac{b_{1}}{c}=\frac{1}{c} \operatorname{Res}_{z=0}(f)$.
d)i) Let $f(z)=\frac{e^{z}}{\tan (z)}$. The (non removable) singularities of f are exactly the points z such that $\sin (z)=0$; inside the box we have exactly 3 of them: $z=-\pi, 0, \pi$ and
all of them are simple poles, with $\operatorname{Res}_{z=z_{0}}(f)=\operatorname{Res}_{z=z_{0}}\left(\frac{\cos (z) e^{z}}{\sin (z)}\right)=e^{z_{0}}$. By the residue theorem

$$
\int_{\partial B} f(z) d z=2 \pi i\left(\operatorname{Res}_{z=-\pi}(f)+\operatorname{Res}_{z=0}(f)+\operatorname{Res}_{z=\pi}(f)\right)=2 \pi i\left(e^{-\pi}+1+e^{\pi}\right)
$$

d)ii) Let $f(z)=\frac{\log (z)}{\sin ^{3}(z-2 i)}$. Clearly in $\operatorname{Ball}_{1}(2 i)$ the function f is analytic except for at the singularity point $z=2 i$ which is a pole of order 3 , so

$$
\operatorname{Res}_{z=2 i}(f)=\frac{1}{2} \lim _{z \rightarrow 2 i}\left(\frac{(z-2 i)^{3} \log (z)}{\sin ^{3}(z-2 i)}\right)^{(2)}=\ldots
$$

and by the residue theorem

$$
\int_{|z-2 i|=1} f(z) d z=2 \pi i \operatorname{Res}_{z=2 i}(f) .
$$

d)iii) The function $f(z)=\frac{\sin (1 / z)}{z-1}$ has 2 singularity points inside $\operatorname{Ball}_{2}(0)$ which are $z=0,1$. Therefore, the residue theorem tells us that

$$
\int_{|z|=2} f(z) d z=2 \pi i\left(\operatorname{Res}_{z=0}(f)+\operatorname{Res}_{z=1}(f)\right)
$$

Clearly $z=1$ is a simple pole of f, thus

$$
\operatorname{Res}_{z=1}(f)=\lim _{z \rightarrow 1}(z-1) f(z)=\sin (1)
$$

while $z=0$ is an essential singularity of f, so we compute the residue by finding the Laurent expansion at $z=0$ of the function and just taking the coefficient of $1 / z$; here is the computation

$$
\begin{aligned}
\sin \left(\frac{1}{z}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!z^{2 n+1}}, \frac{1}{z-1}= & -\sum_{m=0}^{\infty} z^{m} \\
& \Longrightarrow f(z)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^{n+1}}{(2 n+1)!} z^{m-2 n-1}
\end{aligned}
$$

therefore the coefficient of $1 / z$ is given by (choosing $m=2 n$)

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n+1)!}=-\sin (1)
$$

so

$$
\int_{|z|=2} f(z) d z=2 \pi i(\sin (1)-\sin (1))=0
$$

A shorter way to solve this is using the residue at ∞, as $z=0,1$ are the only singularities of f and they are inside $\mathrm{Ball}_{2}(0)$, we have

$$
\int_{|z|=2} f(z) d z=-2 \pi i \operatorname{Res}_{z=\infty}(f)=2 \pi i \operatorname{Res}_{z=0}\left(\frac{1}{z^{2}} f(1 / z)\right)=\operatorname{Res}_{z=0}\left(\frac{\sin (z)}{z-z^{2}}\right)=0
$$

d)iv) Let $f(z)=\frac{z}{e^{2 \pi i z^{2}-1}}$. The singularities of f are exactly $z= \pm \sqrt{k}$ for every $k \in \mathbb{N}$, they are all simple poles, with

$$
\operatorname{Res}_{z= \pm \sqrt{k}}(f)=\left.\frac{z}{4 \pi i z e^{2 \pi i z^{2}}}\right|_{z= \pm \sqrt{k}}=\frac{1}{4 \pi i}
$$

Therefore, from the residue theorem we have

$$
\int_{|z|=R} f(z) d z=2 \pi i \sum_{k: \sqrt{k} \leq R} \operatorname{Res}_{z= \pm \sqrt{k}}(f)=2 \pi i(2 n+1) \frac{1}{4 \pi i}=\frac{2 n+1}{2}
$$

e) For every $|z|=1$ we know that $1 / \bar{z}=z$, therefore

$$
\int_{\gamma} e^{1 / \bar{z}}+e^{-1 / \bar{z}} d z=\int_{\gamma} e^{z}+e^{-z} d z=\left.\right|_{r} ^{-r} e^{z}-e^{-z}=2\left(e^{-r}-e^{r}\right)
$$

4. Question 4.

i) Let $f(x)=\frac{\cos ^{2}(x)}{1-a \sin ^{2}(x)}$. This is a symmetric function, therefore

$$
\int_{0}^{\pi} f(x) d x=\frac{1}{2} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{2} \int_{0}^{2 \pi} f(x) d x
$$

Next, write

$$
\begin{gathered}
\cos (x)=\frac{e^{i x}+e^{-i x}}{2}, \sin (x)=\frac{e^{i x}-e^{-i x}}{2 i}, z=e^{i x}: \\
\int_{0}^{2 \pi} f(x) d x=\frac{1}{4} \int_{|z|=1} \frac{(z+1 / z)^{2}}{1-\frac{a}{4}(z-1 / z)^{2}} \frac{d z}{i z}=\frac{1}{i} \int_{|z|=1} \frac{\left(z^{2}+1\right)^{2}}{z\left(4 z^{2}-a\left(z^{2}-1\right)^{2}\right)} d z
\end{gathered}
$$

As

$$
4 z^{2}-a\left(z^{2}-1\right)^{2}=\left(2 z-\sqrt{a}\left(z^{2}-1\right)\right)\left(2 z+\sqrt{a}\left(z^{2}-1\right)\right)
$$

we get 4 points which are singularities- it remains the find these points and decide which of them lies inside $\operatorname{Ball}_{1}(0)$ and finally calculate the residues at these points.
ii)

$$
\begin{aligned}
& I:=\int_{-\pi}^{\pi} \frac{\cos (n x)}{a-\cos (x)} d x=\operatorname{Re}\left(\int_{-\pi}^{\pi} \frac{e^{i n x}}{a-\cos (x)} d x\right)=\operatorname{Re}\left(\int_{|z|=1} \frac{z^{n} d z}{i z\left(a-\frac{1}{2}\left(z+\frac{1}{z}\right)\right)} d z\right) \\
= & \operatorname{Re}\left(\frac{2}{i} \int_{|z|=1} \frac{z^{n}}{2 a z-z^{2}-1} d z\right)=\operatorname{Re}\left(\frac{-2}{i} \int_{|z|=1} \frac{z^{n}}{\left(z-\left(a+\sqrt{a^{2}-1}\right)\right)\left(z-\left(a-\sqrt{a^{2}-1}\right)\right)} d z\right)
\end{aligned}
$$

as $a>1$, we know that $a+\sqrt{a^{2}-1}>1$ and that $0<a-\sqrt{a^{2}-1}<1$, therefore there is only 1 singularity (that is a simple pole) in $\{|z|<1\}$; by the residue theorem:

$$
\begin{align*}
& I=\operatorname{Re}\left(\frac{-2}{i} 2 \pi i \operatorname{Res}_{z=a-\sqrt{a^{2}-1}}\left(\frac{z^{n}}{2 a z-z^{2}-1}\right)\right) \\
& \quad=\operatorname{Re}\left(-\left.4 \pi\left(\frac{z^{n}}{2 a-2 z}\right)\right|_{z=a-\sqrt{a^{2}-1}}\right)=-2 \pi \frac{\left(a-\sqrt{a^{2}-1}\right)^{n}}{\sqrt{a^{2}-1}} \tag{iii}
\end{align*}
$$

$$
\begin{aligned}
I:=\int_{0}^{2 \pi} \frac{d t}{\left|a e^{i t}-b\right|^{4}}=\int_{0}^{2 \pi} \frac{d t}{\left(a e^{i t}-b\right)^{2}\left(a e^{-i t}-b\right)^{2}} & =\int_{0}^{2 \pi} \frac{e^{2 i t} d t}{\left(a e^{i t}-b\right)^{2}\left(a-b e^{i t}\right)^{2}} \\
& =\int_{|z|=1} \frac{z}{(a z-b)^{2}(a-b z)^{2}} \frac{d z}{i}
\end{aligned}
$$

as $0<a<b$, among the 2 singularities $z=\frac{b}{a}$, $\frac{a}{b}$, only $z=\frac{a}{b}$ is in $\{|z|<1\}$ and it is a pole of order 2 , therefore by the residue theorem

$$
I:=2 \pi \operatorname{Res}_{z=a / b}\left(\frac{z}{(a z-b)^{2}(a-b z)^{2}}\right)=2 \pi \lim _{z \rightarrow a / b}\left(\frac{z}{b^{2}(a z-b)^{2}}\right)^{(1)}=\ldots=\frac{2 \pi\left(a^{2}+b^{2}\right)}{\left(b^{2}-a^{2}\right)^{3}} .
$$

