
Selected Answers to HW 11

Remark See more solutions to integrals in Tirguls.

Question 1

Item a iii

The integral we need to compute is equal to

I =

∫ ∞
0

1

1 + x2n
dx =

1

2

∫ ∞
−∞

1

1 + x2n
dx.

To solve this integral from negative infinity to infinity, one can close the path by the upper semicircle.

Then one has to compute the residues at all the singular points in the upper half-plane (just as we saw

in class). Here’s a different solution:

Denote by θ = π
n and consider the following three paths:

γR(t) = t, γR : [0, R]→ C

αR(t) = Reit, γR : [0, θ]→ C

βR(t) = eiθ(R− t), γR : [0, R]→ C.

We denote by ΓR the concatenation of the three paths (the ”slice” of angle θ). We calculate the integral

I =

∫ ∞
0

1

1 + x2n
dx

by

I = lim
R→∞

∫ R

0

1

1 + x2n
dx = lim

R→∞

∫
ΓR

1

1 + z2n
dz −

∫
αR

1

1 + z2n
dz −

∫
βR

1

1 + z2n
dz

By the integral triangle inequality∣∣∣∣∫
αR

1

1 + z2n
dz

∣∣∣∣ ≤ 2πR max
|z|=R

∣∣∣∣ 1

1 + z2n

∣∣∣∣ →R→∞ 0.

For βR:

−
∫
βR

1

1 + z2n
dz =

∫ R

0

eiθ

1 + eiθ2nt2n
dt =

∫ R

0

eiθ

1 + t2n
dt →

R→∞
eiθI.

(A priori, the limit might not converge, how ever we know the improper integral exists from a comparison

test). Thus we conclude:

(1− eiθ)I = lim
R→∞

∫
ΓR

1

1 + z2n
dz

Or

I =
1

1− eiθ
lim
R→∞

∫
ΓR

1

1 + z2n
dz.
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By the Residue Theorem, the integral is equal to 2πi times the residues of the sigular points in the

interior of ΓR. The singular points of 1
1+z2n are e

i(2πk+π)
2n for all k = 0, 1, ..., 2n− 1. In the interior of ΓR

we have only e
π
2n . Thus

I =
2πi

1− eiθ
Res(

1

1 + z2n
, e

π
2n ).

By a theorem we saw in class, since e
π
2n is a simple root, the residue is equal to 1 over the derivative of

1 + z2n, i.e. −1

2ne
−π
2n

= −1
2ne−θ/2

. In conclusion

I =
2πi

1− eiθ
−1

2ne−iθ/2
=

π

2n sin( π2n )
.

item b i

Let 0 < α < 1 be some real number. Denote by

I =

∫ ∞
−∞

eαx

1 + ex
dx.

Consider the following four paths for some parameter R:

γ1 : [−R,R]→ C, γ1(t) = t,

γ2 : [−, 2π]→ C, γ2(t) = R+ 2πit,

γ3 : [−R,R]→ C, γ3(t) = 2πi− t,

γ4 : [−R,R]→ C, γ4(t) = −R+ 2πi(1− t).

Let ΓR be the concatenation of these four paths. Then

I = lim
R→∞

∫
ΓR

eαz

1 + ez
dz −

4∑
j=2

∫
γj

eαz

1 + ez
dz.

By the Residue Theorem ∫
ΓR

eαz

1 + ez
dz = 2πi

n∑
k=1

Res(
eαz

1 + ez
, zk)

where zk are the singular points of the function in the interior of ΓR. The singular points of eαz
1+ez are

when the denominator is 0. this occurs whenever z = (π+ 2πk)i for any integer k. In our case, the only

singular point inside the closed path is πi. Since this is a simple root of the denominator, the residue is
eαπi

eπi = −eαπi.
Thus ∫

ΓR

eαz

1 + ez
dz = −2πieαπi.

For γ3:

−
∫
γ3

eαz

1 + ez
dz =

∫ R

−R

eαteα2πi

1 + e2πi+t
dt = e2παi

∫ R

−R

eαt

1 + et
dt →

R→∞
e2παiI.

(A priori, the limit might not converge, how ever we know the improper integral exists from a comparison

test).

As for γ2, γ4, we get for j = 2, 4 that from the integral triangle inequality:∣∣∣∣∣
∫
γj

eαz

1 + ez
dz

∣∣∣∣∣ ≤ 2π max
Re(z)=±R

∣∣∣∣ eαz

1 + ez

∣∣∣∣ ≤ 2π max
Re(z)=±R

∣∣∣∣∣ eαRe(z)∣∣1− eRe(z)∣∣
∣∣∣∣∣ →R→∞ 0.

In conclusion

I = −2πieαπi + e2παiI.

I =
−2πieαπi

1− e2παi
=

π

sin(πα)
.
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item b ii

For a = 0 this is by the previous item. For a 6= 0 just decompose 1
s2−a2 = 1

2a

(
1
s−a −

1
s+a

)
and use the

previous item as well. [Note that this could also be solved directly via complex integral as above.]

Question 3

item a

When a function is defined on some environment of infinity (i.e. on R < |z| for some R), the residue at

infinity is defined by

Res(f,∞) =
−1

2πi

∫
|z|=ρ

f(z)dz,

for some ρ > R.

We saw in class that the integral does not depend on the radius ρ.

In our case, since p(z)
q(z) goes to 0 like 1

ρ2 (when rho goes to infinity), the limit of the expression∣∣∣∣∣−1

2πi

∫
|z|=ρ

f(z)dz

∣∣∣∣∣ →
ρ→infty

0.

Thus the residue must be 0.

Another Solution Since limz→∞
p(z)
q(z) = 0 then Resz=∞

p(z)
q(z) = limz→∞−z p(z)q(z) . Since the degree of

q(z) is greater than p(z) by at least 2, then this limit also goes to 0. Thus the residue is 0.

item b

i. False. Take f(z) = 1
z . On the one hand, we know that

Res(
1

z
,∞) = − 1

2πi

∫
|z|=R

dz

z
= −1.

However, Res(z, 0) = 0.

ii. False. E.g. e
1
z has a removable singularity at infinity but the residue is not 0 (it is −c−1 from the

series expansion of e
1
z around 0).

iii. True. We saw in class that if f(z) =
∑∞
n=−∞ cnz

n then the residue at infinity is −c−1. If f is

analytic, then c−1 = 0.

item c

The integral we need to calculate is equal to −2πiRes(f(z),∞) for f(z) = sin(1/z)
cos(1/(z+i)) . We saw in class

that

Res(f(z),∞) = −Res(z−2f(
1

z
), 0).

Thus we need to calculate

Res(
sin(z)

z2cos( z
iz+1 )

, 0).

Denote
sin(z)

z2cos( z
iz+1 )

=
g(z)

h(z)

For g(z) = sin(z)
z and h(z) = zcos( z

iz+1 ). Hence g is analytic at 0 and h has a simple 0, thus

Res(
sin(z)

z2cos( z
iz+1 )

, 0) =
g(0)

h′(0)
=

1

cos(1) + 0
= 1,

and the integral is equal to 2πi.
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item d

i. This is a simply connected domain and f(z) is analytic there thus from a theorem we saw in class

f has a primitive function there.

ii. No. Not all closed paths integrate to 0. Take a small circle around z0 = 1√
2π

- the integral is

2πiRes(f, z0). The residue is not 0 (check at home).

iii. Yes. By Morera’s theorem, we need to show that for every circle, the integral of
∫
|z−a|=R f(z)dz = 0.

Notice that if the circle does not circle the ball of radius 0 then it’s interior is simply connected and

thus the integral is 0. Now take some circle that circles 0. The integral is equal to equal to

−2πiRes(f(z),∞).

The residue in this case is Res(f(z),∞) = Res( 1
z2 f( 1

z ), 0) = Res( 1
z2sin(z2) , 0). The function

z2sin(z2) is even, thus from previous homework its Laurent series is composed of even powers

z2k, and it has no residue at 0. Thus the integral is 0.

Question 4

item a

The residue at infinity isRes(Log( z
z+2 ,∞) = Res( 1

z2Log( 1/z
2+(1/z) ), 0). The function g(z) = Log( 1/z

2+(1/z) ) =

Log( 1
2z+1 ) is analytic around 0. Thus the residue of 1

z2
1
z2Log( 1/z

2+(1/z) ) is the coefficient multiplying z

in the Taylor series of g(z), i.e. g′(0) = −1. No. Assume towards contradiction that there was such a

function. Then ∫
|z|=10

f(z)dz = 0.

by the fundamental theorem for complex functions. On the other hand,∫
|z|=10

f(z)dz = −Res(f,∞) = 1.

A contradiction.

item b

First we show that g(z) = ef(z)/n is an analytic branch of n

√
z
z+2 ). Indeed g(z)n = ef(z) = eLog(

z
z+2 .

As z
z+2 is a non-positive real number if and only if z ∈ [−2, 0] we can define g(z) on C \ [−2, 0].

Calculate the integral: ∫
|z|=3

g(z)dz = −2πiRes(g,∞).

Since limz→∞ g(z) = e
1
n limz→∞ f(z) = e0 = 1, then

Res(g,∞) = Res(z−2(g(
1

z
)), 0) =

1

z2
e

1
nLog(

1
2z+1 ).

The function h(z) = e
1
nLog(

1
2z+1 ) is analytic around 0 thus the residue is it’s first derivative at 0, h′(0) =

−1
n (similar to our argument in item a). Thus the integral is equal to 2πi

n .
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