HW12: SOLUTIONS

1. Question 1

a) Yes. As f is continuous, its image is path-connected. But the set $\mathbb{C} \backslash\{|z|=1\}$ is not path-connected, thus the image of f lies either in $\{|z|>1\}$ or in $\{|z|<1\}$. Both cases contradict the fact that the image of a non-constant entire function is a dense subset of \mathbb{C}.

Another solution: As $f \in \mathcal{O}(\mathbb{C})$, if f is bounded then by Liouville's theorem f is constant. If f is not bounded, then $|f(z)|$ is not bounded and is a real continuous function such that $|f(z)| \neq 1$ for all $z \in \mathbb{C}$, so we must have $|f(z)|>1$ for all $z \in \mathbb{C}$. In particular it means that $f(z) \neq 0$ for all $z \in \mathbb{C}$ and hence the function $g(z)=1 / f(z)$ is entire and bounded, hence constant and so is f.
d)i) Let $f \in \mathcal{O}(\mathbb{C})$ be bounded and $a \neq b$ in \mathbb{C}. Define

$$
g(z)=\frac{f(z)}{(z-a)(z-b)}
$$

For every $R>\max \{|a|,|b|\}$, we have by the residue theorem

$$
\int_{|z|=R} g(z) d z=2 \pi i\left(\operatorname{Res}_{z=a}(g)+\operatorname{Res}_{z=b}(g)\right)=2 \pi i\left(\frac{f(a)}{a-b}+\frac{f(b)}{b-a}\right)=2 \pi i\left(\frac{f(b)-f(a)}{b-a}\right) .
$$

ii) f is bounded, say $|f(z)| \leq M$ for all $z \in \mathbb{C}$. For every $|z|=R$, we have

$$
|g(z)|=\frac{|f(z)|}{|z-a||z-b|} \leq \frac{M}{|R-|a|||R-|b||}
$$

and hence

$$
\left|\int_{|z|=R} g(z) d z\right| \leq \frac{M R}{|(R-|a|)(R-|b|)|} \int_{0}^{2 \pi} d \theta
$$

which implies that

$$
\lim _{R \rightarrow \infty} \int_{|z|=R} g(z) d z=0
$$

As a corollary, we get from the first part of the question that

$$
0=2 \pi i\left(\frac{f(b)-f(a)}{b-a}\right) \Longrightarrow f(a)=f(b)
$$

for every $a \neq b$ in \mathbb{C}, i.e., that f is constant.

2. Question 2

(i) Let $p(z)=z^{5}+z+1$. Notice that all the zeros of p are in $\operatorname{Ball}_{2}(0)$: if $p\left(z_{0}\right)=0$ and $\left|z_{0}\right| \geq 2$, then $-1=z_{0}^{5}+z_{0}$ implies

$$
1=\left|z_{0}^{5}+z_{0}\right|=\left|z_{0}\right|\left|1+z_{0}^{4}\right| \geq 2| | z_{0}^{4}|-1| \geq 30
$$

which is a contradiction. Therefore all the zeros of p satisfy $|z|<2$. Thus by the residue theorem
$\int_{|z|=2} \frac{d z}{p(z)}=2 \pi i \operatorname{Res}_{z=\infty}\left(\frac{1}{p(z)}\right)=-2 \pi i \operatorname{Res}_{z=0}\left(\frac{1}{z^{2} p(1 / z)}\right)=-2 \pi i \operatorname{Res}\left(\frac{z^{3}}{1+z^{4}+z^{5}}\right)=0$,
since the last function is analytic at $z=0$.
(ii) If R is big enough, all the zeros of $p(z)$ will be in $\operatorname{Ball}_{R}(0)$ and thus by the residue theorem
$\int_{|z|=R} \frac{d z}{p(z)}=2 \pi i \operatorname{Res}_{z=\infty}\left(\frac{1}{p(z)}\right)=-2 \pi i \operatorname{Res}_{z=0}\left(\frac{1}{z^{2} p(1 / z)}\right)=-2 \pi i \operatorname{Res}\left(\frac{z^{d-2}}{c_{d}+\ldots+c_{0} z^{d}}\right)$,
for $d \geq 2$ the function is analytic at $z=0\left(\right.$ since $\left.c_{d} \neq 0\right)$ and hence the integral is 0 ; for $d=1$ we get a simple pole at $z=0$ and hence

$$
\int_{|z|=R} \frac{d z}{p(z)}=\frac{-2 \pi i}{c_{d}}
$$

finally, if $d=0$, the integral is equal to 0 as $1 / p(z)$ is a constant.
(v) Let

$$
f(z)=\frac{1}{\left(e^{1-z}-1\right)\left(z^{3}-1\right)}
$$

so

$$
\int_{R e(z)=1 / 2} f(z) d z=\lim _{R \rightarrow \infty} \int_{\gamma_{R}} f(z) d z=\lim _{R \rightarrow \infty}\left(\int_{\Gamma_{R}} f(z) d z-\int_{\eta_{R}} f(z) d z\right)
$$

where γ_{R}, Γ_{R} and η_{R} are given by

$$
\begin{gathered}
\gamma_{R}(x)=\frac{1}{2}+x, x \in[-R, R] \\
\eta_{R}(t)=\frac{1}{2}+R e^{i t}, t \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]
\end{gathered}
$$

and

$$
\Gamma_{R}=\gamma_{R} \cup \eta_{R}
$$

First, let's show that the integral on η_{R} tends to 0 : for every $z \in \eta_{R}$ we have $|z-1 / 2|=R$ and hence $R-1 / 2 \leq|z| \leq R+1 / 2$ and also $\operatorname{Re}(z) \leq 1 / 2$; therefore

$$
|f(z)| \leq \frac{1}{\left.\left|\left|e^{1-z}\right|-1\right|| | z\right|^{3}-1 \mid} \leq \frac{1}{\left|e^{1-\operatorname{Re}(z)}-1\right|\left|(R-1 / 2)^{3}-1\right|} \leq \frac{1}{|\sqrt{e}-1|} \frac{1}{(R-1 / 2)^{3}-1}
$$

for R large enough and hence

$$
\lim _{R \rightarrow \infty} \int_{\eta_{R}} f(z) d z=0
$$

To compute the other integral we use the residue theorem, so we need to know what are the singularities of f : the function has singularities at the points

$$
z_{1}=e^{2 \pi i / 3}, z_{2}=e^{-2 \pi i / 3}, 1,1+2 \pi n i, \forall n \in \mathbb{Z}
$$

among all those points only the first two are inside Γ_{R} (notice that this is why we chose the left hand side of the circle around $1 / 2$ and not the right one) and they are both simple poles. So

$$
\int_{\Gamma_{R}} f(z) d z=2 \pi i\left(\operatorname{Res}_{z=z_{1}}(f)+\operatorname{Res}_{z=z_{2}}(f)\right)=2 \pi i\left(\frac{1}{\left(e^{1-z_{1}}-1\right) 3 z_{1}^{2}}+\frac{1}{\left(e^{1-z_{2}}-1\right) 3 z_{2}^{2}}\right)=\ldots
$$

3. Question 3

Let $f(z)=\sin (\tan z)-\tan (\sin z)$; check what is the order of $z=0$ as a zero of f : with some calculations one can write the Taylor polynomial of f of order 6 that is $\tan (z)=z+\frac{1}{3} z^{3}+\frac{2}{15} z^{5}+o\left(z^{6}\right)$, then plug it together with the Taylor polynomial of $\sin (z)$ of order 6 , to get

$$
\begin{aligned}
f(z)=\tan (z)-\frac{(\tan (z))^{3}}{3!}+\frac{(\tan (z))^{5}}{5!}-\sin (z)-\frac{(\sin (z))^{3}}{3} & -\frac{2(\sin (z))^{5}}{15}+o\left(z^{6}\right) \\
& =\ldots=0+o\left(z^{6}\right)
\end{aligned}
$$

therefore

$$
\lim _{z \rightarrow 0} \frac{f(z)}{z^{6}}=0
$$

which means that

$$
g(z):=\frac{f(z)}{z^{4}}
$$

has a zero at $z=0$ which is of order at least 2 . Thus from a theorem studied in class, for every $0<|\epsilon| \ll 1$ there are two different points such that $g(z)=\epsilon$, i.e., such that $f(z)=\epsilon z^{4}$. However, $z=0$ is a solution of that equation and if $z_{1} \neq 0$ is another solution so $-z_{1}$ is a third solution. So if there are 2 different solution to this equation, there mist be at least 3 different ones, as needed.

Notice that if you show- in some other way - that the order of $z=0$ as a zero of $f(z)$ is equal to 7 (which is true) then automatically the statement holds, without the argument that if f has 2 solutions then it must have 3 .

4. Question 4

b) Suppose $f, g \in \mathcal{O}(\mathbb{C})$ such that $f(z)^{2}+g(z)^{2}=1$ for all $z \in \mathbb{C}$. Therefore

$$
(f(z)+i g(z))(f(z)-i g(z))=1
$$

for all $z \in \mathbb{C}$, so $f(z)+i g(z) \neq 0$ for all $z \in \mathbb{C}$. Therefore, from the first part of the question (since $f+i g \in \mathcal{O}(\mathbb{C})$), there exists $h \in \mathcal{O}(\mathbb{C})$ such that

$$
e^{h(z)}=f(z)+i g(z) \Longrightarrow f(z)-i g(z)=\frac{1}{f(z)+i g(z)}=e^{-h(z)}
$$

so

$$
f(z)=\frac{1}{2}\left(e^{h(z)}+e^{-h(z)}\right), g(z)=\frac{1}{2 i}\left(e^{h(z)}-e^{-h(z)}\right) .
$$

Let $\phi(z):=-i h(z) \in \mathcal{O}(\mathbb{C})$, so we get that

$$
f(z)=\cos (\phi(z)), g(z)=\sin (\phi(z))
$$

The other direction is direct since $\sin ^{2}(z)+\cos ^{2}(z)=1$ in \mathbb{C}.
c) Let f be meromorphic in \mathbb{C} and suppose that $\operatorname{Im}(f) \cap \mathbb{R}_{\leq 0}=\emptyset$, where $\operatorname{Im}(f)$
is the image of f, in particular we get that $f(z) \neq 0$ for any z in the domain of f. Define

$$
g(z)=1+\frac{1}{f(z)}
$$

as f is meromorphic we get that all the singularities of f are now removable points of g and moreover they are zeros of g; therefore $g \in \mathcal{O}(\mathbb{C})$ and also

$$
\operatorname{Im}(g) \cap \mathbb{R}_{\leq 0}=\emptyset
$$

Notice that $1 / f(z)$ might vanish at some points (which are singularities of f) and that is why we added 1 . We actually changed the question to be about entire function instead of meromorphic, but now the answer is obvious:

We get that $\log g(z)$ entire but $\log g(z)$ has a bounded imaginary part, so using Liouville's theorem we can get that the imaginary part of $\log g$ is constant and so is $\log g$ (due to the Cauchy-Riemann equations for example) and g as well. As g is constant, it is easy to see that f must be a constant.

5. Question 5

a) For R large enough, all the zeros of p are inside $\operatorname{Ball}_{R}(0)$, therefore by the argument of principle

$$
\int_{|z|=R} \frac{p^{\prime}(z)}{p(z)} d z=2 \pi i(N-P)
$$

where N stands for the number of zeros of $p(z)$ in $\operatorname{Ball}_{R}(0)$ and P stands for the number of poles of $p(z)$ in $\operatorname{Ball}_{R}(0)$, including multiplicities. Clearly $P=0$ and $N=n$, therefore

$$
\int_{|z|=R} \frac{p^{\prime}(z)}{p(z)} d z=2 \pi i n .
$$

f) Let

$$
p(z)=z^{4}+8 z^{3}+3 z^{2}+8 z+3 .
$$

First observation is that $p(z) \neq 0$ for all $z \in i \mathbb{R}$: if $z=i y \in i \mathbb{R}$ (with $y \in \mathbb{R}$), then $p(z)=3-3 y^{2}+y^{4}+i\left(8 y-8 y^{3}\right) \neq 0$, since the real part, which is $3-3 y^{2}+y^{4}$, never vanishes for $y \in \mathbb{R}$. Next, for any $R>0$ let $\Gamma_{R}=\eta_{R} \cup \gamma_{R}$, where

$$
\gamma_{R}(t)=R e^{i t}, t \in[-\pi / 2, \pi / 2]
$$

and

$$
\eta_{R}(x)=-i x, x \in[-R, R] .
$$

As $p(z) \neq 0$ for any z on η_{R} and also on γ_{R} for large enough R (more precisely we need $R>\max \left\{\left|z_{1}\right|, \ldots,\left|z_{4}\right|\right\}$ where z_{1}, \ldots, z_{4} are the zeros of $p(z)$), we can use the argument of principle to conclude that

$$
\int_{\Gamma_{R}} \frac{p^{\prime}(z)}{p(z)} d z=2 \pi i N_{R}
$$

where N_{R} is the number of zeros of $p(z)$ inside Γ_{R}; therefore the number of zeros of $p(z)$ in $\{z: \operatorname{Re}(z)>0\}$ is equal to

$$
\lim _{R \rightarrow \infty} N_{R}=\frac{1}{2 \pi i} \lim _{R \rightarrow \infty}\left(\int_{\gamma_{R}} \frac{p^{\prime}(z)}{p(z)} d z+\int_{\eta_{R}} \frac{p^{\prime}(z)}{p(z)} d z\right) .
$$

A straightforward computation shows that if $z=i y$, then $\operatorname{Re}(p(i y))=3-3 y^{2}+y^{4}>$ 0 , thus $\log (p(z))$ is defined in $i \mathbb{R}$, however notice that $p(i R)=R^{4}(1+O(1 / R))$ and $p(-i R)=R^{4}(1+O(1 / R))$, so
$\lim _{R \rightarrow \infty} \int_{\eta_{R}} \frac{p^{\prime}(z)}{p(z)} d z=\lim _{R \rightarrow \infty}[\log (p(-i R))-\log (p(i R))]=\lim _{R \rightarrow \infty} \log (1+O(1 / R))=0$.
Similarly, as $z \rightarrow \infty$, we have

$$
\frac{p^{\prime}(z)}{p(z)}=\frac{4}{z}-O\left(1 / z^{2}\right)
$$

which implies that

$$
\lim _{R \rightarrow \infty} \int_{\gamma} \frac{p^{\prime}(z)}{p(z)} d z=\lim _{R \rightarrow \infty}\left[\int_{\gamma} \frac{4 d z}{z}+\int_{\gamma} O\left(1 / z^{2}\right) d z\right]=4 \pi i
$$

Finally, we get that

$$
\lim _{R \rightarrow \infty} N_{R}=\frac{1}{2 \pi i} 4 \pi i=2
$$

