
HW12: SOLUTIONS

1. Question 1

a) Yes. As f is continuous, its image is path-connected. But the set C\{|z| = 1}
is not path-connected, thus the image of f lies either in {|z| > 1} or in {|z| < 1}.
Both cases contradict the fact that the image of a non-constant entire function is
a dense subset of C.

Another solution: As f ∈ O(C), if f is bounded then by Liouville’s theorem f is
constant. If f is not bounded, then |f(z)| is not bounded and is a real continuous
function such that |f(z)| 6= 1 for all z ∈ C, so we must have |f(z)| > 1 for all
z ∈ C. In particular it means that f(z) 6= 0 for all z ∈ C and hence the function
g(z) = 1/f(z) is entire and bounded, hence constant and so is f .

d)i) Let f ∈ O(C) be bounded and a 6= b in C. Define

g(z) =
f(z)

(z − a)(z − b)
.

For every R > max{|a|, |b|}, we have by the residue theorem
∫

|z|=R

g(z)dz = 2πi(Resz=a(g)+Resz=b(g)) = 2πi
( f(a)

a − b
+

f(b)
b − a

)
= 2πi

(f(b) − f(a)
b − a

)
.

ii) f is bounded, say |f(z)| ≤ M for all z ∈ C. For every |z| = R, we have

|g(z)| =
|f(z)|

|z − a||z − b|
≤

M

|R − |a|||R − |b||

and hence ∣
∣
∣
∣
∣

∫

|z|=R

g(z)dz

∣
∣
∣
∣
∣
≤

MR

|(R − |a|)(R − |b|)|

∫ 2π

0

dθ

which implies that

lim
R→∞

∫

|z|=R

g(z)dz = 0.

As a corollary, we get from the first part of the question that

0 = 2πi
(f(b) − f(a)

b − a

)
=⇒ f(a) = f(b)

for every a 6= b in C, i.e., that f is constant.

2. Question 2

(i) Let p(z) = z5 + z + 1. Notice that all the zeros of p are in Ball2(0): if
p(z0) = 0 and |z0| ≥ 2, then −1 = z5

0 + z0 implies

1 = |z5
0 + z0| = |z0||1 + z4

0 | ≥ 2||z4
0 | − 1| ≥ 30

1
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which is a contradiction. Therefore all the zeros of p satisfy |z| < 2. Thus by the
residue theorem
∫

|z|=2

dz

p(z)
= 2πiResz=∞

( 1
p(z)

)
= −2πiResz=0

( 1
z2p(1/z)

)
= −2πiRes

( z3

1 + z4 + z5

)
= 0,

since the last function is analytic at z = 0.

(ii) If R is big enough, all the zeros of p(z) will be in BallR(0) and thus by the
residue theorem
∫

|z|=R

dz

p(z)
= 2πiResz=∞

( 1
p(z)

)
= −2πiResz=0

( 1
z2p(1/z)

)
= −2πiRes

( zd−2

cd + . . . + c0zd

)
,

for d ≥ 2 the function is analytic at z = 0 (since cd 6= 0) and hence the integral is
0; for d = 1 we get a simple pole at z = 0 and hence

∫

|z|=R

dz

p(z)
=

−2πi

cd
;

finally, if d = 0, the integral is equal to 0 as 1/p(z) is a constant.

(v) Let

f(z) =
1

(e1−z − 1)(z3 − 1)
,

so
∫

Re(z)=1/2

f(z)dz = lim
R→∞

∫

γR

f(z)dz = lim
R→∞

(∫

ΓR

f(z)dz −
∫

ηR

f(z)dz
)
,

where γR, ΓR and ηR are given by

γR(x) =
1
2

+ x, x ∈ [−R,R]

ηR(t) =
1
2

+ Reit, t ∈
[π
2

,
3π

2

]

and

ΓR = γR ∪ ηR.

First, let’s show that the integral on ηR tends to 0: for every z ∈ ηR we have
|z − 1/2| = R and hence R − 1/2 ≤ |z| ≤ R + 1/2 and also Re(z) ≤ 1/2; therefore

|f(z)| ≤
1

||e1−z| − 1|||z|3 − 1|
≤

1
|e1−Re(z) − 1||(R − 1/2)3 − 1|

≤
1

|
√

e − 1|
1

(R − 1/2)3 − 1

for R large enough and hence

lim
R→∞

∫

ηR

f(z)dz = 0.

To compute the other integral we use the residue theorem, so we need to know what
are the singularities of f : the function has singularities at the points

z1 = e2πi/3, z2 = e−2πi/3, 1, 1 + 2πni, ∀n ∈ Z
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among all those points only the first two are inside ΓR (notice that this is why we
chose the left hand side of the circle around 1/2 and not the right one) and they
are both simple poles. So
∫

ΓR

f(z)dz = 2πi
(
Resz=z1(f)+Resz=z2(f)

)
= 2πi

( 1
(e1−z1 − 1)3z2

1

+
1

(e1−z2 − 1)3z2
2

)
= . . .

3. Question 3

Let f(z) = sin(tan z)− tan(sin z); check what is the order of z = 0 as a zero of f :
with some calculations one can write the Taylor polynomial of f of order 6 that is
tan(z) = z + 1

3z3 + 2
15z5 + o(z6), then plug it together with the Taylor polynomial

of sin(z) of order 6, to get

f(z) = tan(z) −
(tan(z))3

3!
+

(tan(z))5

5!
− sin(z) −

(sin(z))3

3
−

2(sin(z))5

15
+ o(z6)

= . . . = 0 + o(z6),

therefore

lim
z→0

f(z)
z6

= 0,

which means that

g(z) :=
f(z)
z4

has a zero at z = 0 which is of order at least 2. Thus from a theorem studied in
class, for every 0 < |ε| � 1 there are two different points such that g(z) = ε, i.e.,
such that f(z) = εz4. However, z = 0 is a solution of that equation and if z1 6= 0
is another solution so −z1 is a third solution. So if there are 2 different solution to
this equation, there mist be at least 3 different ones, as needed.

Notice that if you show— in some other way— that the order of z = 0 as a
zero of f(z) is equal to 7 (which is true) then automatically the statement holds,
without the argument that if f has 2 solutions then it must have 3.

4. Question 4

b) Suppose f, g ∈ O(C) such that f(z)2 + g(z)2 = 1 for all z ∈ C. Therefore

(f(z) + ig(z))(f(z) − ig(z)) = 1

for all z ∈ C, so f(z) + ig(z) 6= 0 for all z ∈ C. Therefore, from the first part of the
question (since f + ig ∈ O(C)), there exists h ∈ O(C) such that

eh(z) = f(z) + ig(z) =⇒ f(z) − ig(z) =
1

f(z) + ig(z)
= e−h(z),

so

f(z) =
1
2
(eh(z) + e−h(z)), g(z) =

1
2i

(eh(z) − e−h(z)).

Let φ(z) := −ih(z) ∈ O(C), so we get that

f(z) = cos(φ(z)), g(z) = sin(φ(z)).

The other direction is direct since sin2(z) + cos2(z) = 1 in C.

c) Let f be meromorphic in C and suppose that Im(f) ∩ R≤0 = ∅, where Im(f)



4 HW12: SOLUTIONS

is the image of f , in particular we get that f(z) 6= 0 for any z in the domain of f .
Define

g(z) = 1 +
1

f(z)
,

as f is meromorphic we get that all the singularities of f are now removable points
of g and moreover they are zeros of g; therefore g ∈ O(C) and also

Im(g) ∩ R≤0 = ∅.

Notice that 1/f(z) might vanish at some points (which are singularities of f) and
that is why we added 1. We actually changed the question to be about entire
function instead of meromorphic, but now the answer is obvious:

We get that log g(z) entire but log g(z) has a bounded imaginary part, so using
Liouville’s theorem we can get that the imaginary part of log g is constant and so
is log g (due to the Cauchy–Riemann equations for example) and g as well. As g is
constant, it is easy to see that f must be a constant.

5. Question 5

a) For R large enough, all the zeros of p are inside BallR(0), therefore by the
argument of principle

∫

|z|=R

p′(z)
p(z)

dz = 2πi(N − P ),

where N stands for the number of zeros of p(z) in BallR(0) and P stands for the
number of poles of p(z) in BallR(0), including multiplicities. Clearly P = 0 and
N = n, therefore

∫

|z|=R

p′(z)
p(z)

dz = 2πin.

f) Let

p(z) = z4 + 8z3 + 3z2 + 8z + 3.

First observation is that p(z) 6= 0 for all z ∈ iR: if z = iy ∈ iR (with y ∈ R), then
p(z) = 3 − 3y2 + y4 + i(8y − 8y3) 6= 0, since the real part, which is 3 − 3y2 + y4,
never vanishes for y ∈ R. Next, for any R > 0 let ΓR = ηR ∪ γR, where

γR(t) = Reit, t ∈ [−π/2, π/2]

and

ηR(x) = −ix, x ∈ [−R,R].

As p(z) 6= 0 for any z on ηR and also on γR for large enough R (more precisely we
need R > max{|z1|, . . . , |z4|} where z1, . . . , z4 are the zeros of p(z)), we can use the
argument of principle to conclude that

∫

ΓR

p′(z)
p(z)

dz = 2πiNR,

where NR is the number of zeros of p(z) inside ΓR; therefore the number of zeros
of p(z) in {z : Re(z) > 0} is equal to

lim
R→∞

NR =
1

2πi
lim

R→∞

(∫

γR

p′(z)
p(z)

dz +
∫

ηR

p′(z)
p(z)

dz
)
.
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A straightforward computation shows that if z = iy, then Re(p(iy)) = 3−3y2+y4 >
0, thus log(p(z)) is defined in iR, however notice that p(iR) = R4(1+O(1/R)) and
p(−iR) = R4(1 + O(1/R)), so

lim
R→∞

∫

ηR

p′(z)
p(z)

dz = lim
R→∞

[
log(p(−iR)) − log(p(iR))

]
= lim

R→∞
log(1 + O(1/R)) = 0.

Similarly, as z → ∞, we have

p′(z)
p(z)

=
4
z
− O(1/z2),

which implies that

lim
R→∞

∫

γ

p′(z)
p(z)

dz = lim
R→∞

[ ∫

γ

4dz

z
+
∫

γ

O(1/z2)dz
]

= 4πi.

Finally, we get that

lim
R→∞

NR =
1

2πi
4πi = 2.


