
Selected Answers to HW 13

Question 1

Item a

Let f : U → C be a non-constant function. We showed in class that for every inner point z0 ∈ U where

f ′(z0) 6= 0 there is some ε > 0 so that f(Ballε(z0)) is open. We now show this for any arbitrary z0

without the assumption that f ′(z0) 6= 0.

Let z0 be so that f ′(z0) = 0 and without loss of generality suppose also that f(z0) = 0 (why?).

Thus f has ordz0(f) = k ≥ 2. We will use what we prove in part c of this question: that there is an

analytic function h(z) = (z − z0)g(z) so that h(z)k = f(z), and so that g(z) is analytic and g(z0) 6= 0.

As h′(z0) = g(z0) 6= 0 then by the open-function function theorem, there is some Ballε′(z0) so that

h(Ballε(z0)) is open.

Additionally, the function z 7→ zk also sends open sets to open sets (for open sets that don’t contain

0 this is true by the open function theorem we saw in class, and for balls around 0 this is true since it

sends Ballε(0) to Ballεk(0)). Thus hk(Ballε(0) is also open as needed.

The claim in question does not hold for any arbitrary f : U → R2 even if it is C∞. For example,

take f : R2 → R2 that is defined by f(x, y) = (x2, y2). It sends the open set R2 to [0,∞)× [0,∞) which

is not open.

Item b

No. We saw in the previous item that the image of f must be an open set. C \ (0, 1) is not an open set

(e.g. because 1 is not an inner point).

Item c

Indeed, let f(z) = (z − z0)nφ(z) be some function with a 0 of order n at z0 only. We already saw in the

previous homework that we can define g(z) = (z − z0)h(z) where g′(z0) = h(z0) 6= 0 and f(z) = (g(z))n

in some neighbourhood around z0. We now prove that we can in fact define h(z) in all U .

We write h(z) = n
√
φ(z), and we can define h whenever the domain has no loop around 0. Assume

towards contradiction that there is there is some closed path γ ⊂ U around 0. On the one hand,

η(φ ◦ γ, 0) =

∫
φ◦γ

1

z
dz 6= 0.

On the other hand, ∫
φ◦γ

1

z
dz =

∫
γ

φ′(z)

φ(z)
= 2πi(N − P )

from the argument principle. As φ has no zeros nor poles in U then this integral is 0 - a contradiction.
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Question 2

Item b

We can see how many times the path p(∂Ball1(0)) by the winding number:

η(p(∂Ball1(0)), 0) =
1

2πi

∫
p(∂Ball1(0))

1

z
dz.

This is equal to ∫
p(∂Ball1(0))

1

z
dz =

∫
∂Ball1(0)

p′(z)

p(z)
dz,

and by the argument principle this is equal to the number of zeros minus the number of poles in the unit

ball (note that p(z) has no zero’s in ∂Ball1(0) thus we can indeed use the argument principle). p(z) has

no poles so

η(p(∂Ball1(0)), 0) = NBall1(0).

Note that on the boundary ∂Ball1(0) = {z : |z| = 1}

|3z3| ≥ |z10 + 1|

Thus by Roche’s Lemma, the number of zeros that p(z) = (3z3) + (z10 + 1) has in the ball is equal to

the number of zeros that 3z3 has in the ball - i.e. 3 zeros.

Thus we conclude that p(∂Ball1(0)) circles 0 three times.

Item c

Denote f(z) = p(z)
q(z) . Note that f̄(z̄) is also analytic (why?), which implies that f̄(1/z̄) is also analytic.

But

f̄(1/z̄) = f̄(z) = f(z)

(initially this is true on the boundary of the ball since there f is real, but from the uniqueness theorem

it is true in all C). Thus in particular, if f(z) = 0 then f(1/z̄) = 0 (and same for poles).

Now if p(z) 6= 0 for any |z| = 1, we can say a bit more:

For γ : [0, 2π]→ C, γ = eit the canonical parametrization for the unit circle, f ◦ γ(t) ∈ R. Thus the

winding number of 0

η(f ◦ γ, 0) =

∫
f◦γ

1

z
dz = 0.

Thus by the argument principle in Ball1(0) the number of zeros and the number of poles is equal.

Item e

See solution in last Tirgul.

Question 3

Item b

As seen before, when ordz0(f) = p we can write f(z) = [(z−z0)h(z)]p, where h is some analytic function

and h(z0) 6= 0 in some local neighbourhood around z0.

The inner function g(z) = (z − z0)h(z) has a derivative g′(z0) = h(z0) 6= 0 thus is conformal at z0.

Hence we can change to local coordinates and take f(z) = zp. For any γ1, γ2 who intersect at z0, and

have angle

∠(γ1, γ2) = α
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Then

∠(γ1(t)p, γ2(t)p) = pα.

Indeed, when h(z) = zp then h(reiθ) = rpei(pθ) the function z 7→ zp multiplies angles by a factor of

p and thus

∠(γ1(t)p, γ2(t)p) = pα.

Question 4

Item c

TL;DR - take Ta ◦ Sb−ad ◦ Inv ◦ Td (and check at home that this works).

Longer explanation (or - how we found these specific transformations):

Without loss of generality we can assume that c = 1 (why?). First we would like to get z + d in the

denominator, so we take the following elementary transformations:

Inv ◦ Td(z) =
1

z + d

. Now we note that for any constant K

K +
1

z + d
=
Kz +Kd

z + d
,

So at the end we would like to have apply Ta. If we would apply Ta directly we would get

Ta ◦ Inv ◦ Td(z) =
az + ad

z + d
,

and to fix this we apply Sb−ad before Ta and get

Ta ◦ Sad−b ◦ Inv ◦ Td(z) =
az + b

z + d
.

As we assume that ad− bc = ad− b 6= 0 these are all elementary transformations.

Item e

Note that if c = 0 then f is a linear transformation and then the proof is direct (check at home).

Let’s prove for the case where c 6= 0. From item c, we can write

f(z) = Ta ◦ Sb−ad ◦ Inv ◦ Td

where Ta, Sb−ad, Td all send circles/lines to circles/lines, so it is enough to show that g(z) = 1
z sends

circles/lines to circles/lines.

A line or circle in R2 are presented by ã(x2 + y2) + b̃x+ c̃y + d̃ = 0 (if ã = 0 then a line, otherwise a

circle). Furthermore, notice that for any ã, b̃, c̃, d̃ ∈ R this equation defines a line, a circle, a point (e.g.

x2 + y2 = 0) or the empty set (e.g. x2 + y2 + 1 = 0.

Thus in C we have a line or circle represented as

azz̄ + bz + cz̄ + d = 0.

By dividing by z̄z we see that this equation holds if and only if for w = f(z) = 1
z :

a+ bw̄ + cw + dww̄ = 0.

This is not a point or the empty set, since the original equation has infinitely many satisfying points,

that also satisfy the new equation in w. Thus we get either a line or a circle.
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