Selected Answers to HW 13

Question 1

Item a

Let $f: U \rightarrow \mathbb{C}$ be a non-constant function. We showed in class that for every inner point $z_{0} \in U$ where $f^{\prime}\left(z_{0}\right) \neq 0$ there is some $\varepsilon>0$ so that $f\left(\operatorname{Ball}_{\varepsilon}\left(z_{0}\right)\right)$ is open. We now show this for any arbitrary z_{0} without the assumption that $f^{\prime}\left(z_{0}\right) \neq 0$.

Let z_{0} be so that $f^{\prime}\left(z_{0}\right)=0$ and without loss of generality suppose also that $f\left(z_{0}\right)=0$ (why?). Thus f has $\operatorname{ord}_{z_{0}}(f)=k \geq 2$. We will use what we prove in part c of this question: that there is an analytic function $h(z)=\left(z-z_{0}\right) g(z)$ so that $h(z)^{k}=f(z)$, and so that $g(z)$ is analytic and $g\left(z_{0}\right) \neq 0$. As $h^{\prime}\left(z_{0}\right)=g\left(z_{0}\right) \neq 0$ then by the open-function function theorem, there is some $\operatorname{Ball}_{\varepsilon^{\prime}}\left(z_{0}\right)$ so that $h\left(\operatorname{Ball}_{\varepsilon}\left(z_{0}\right)\right)$ is open.

Additionally, the function $z \mapsto z^{k}$ also sends open sets to open sets (for open sets that don't contain 0 this is true by the open function theorem we saw in class, and for balls around 0 this is true since it sends $\operatorname{Ball}_{\varepsilon}(0)$ to $\left.\operatorname{Ball}_{\varepsilon^{k}}(0)\right)$. Thus $h^{k}\left(\operatorname{Ball}_{\varepsilon}(0)\right.$ is also open as needed.

The claim in question does not hold for any arbitrary $f: U \rightarrow \mathbb{R}^{2}$ even if it is C^{∞}. For example, take $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that is defined by $f(x, y)=\left(x^{2}, y^{2}\right)$. It sends the open set \mathbb{R}^{2} to $[0, \infty) \times[0, \infty)$ which is not open.

Item b

No. We saw in the previous item that the image of f must be an open set. $\mathbb{C} \backslash(0,1)$ is not an open set (e.g. because 1 is not an inner point).

Item c

Indeed, let $f(z)=\left(z-z_{0}\right)^{n} \phi(z)$ be some function with a 0 of order n at z_{0} only. We already saw in the previous homework that we can define $g(z)=\left(z-z_{0}\right) h(z)$ where $g^{\prime}\left(z_{0}\right)=h\left(z_{0}\right) \neq 0$ and $f(z)=(g(z))^{n}$ in some neighbourhood around z_{0}. We now prove that we can in fact define $h(z)$ in all U.

We write $h(z)=\sqrt[n]{\phi(z)}$, and we can define h whenever the domain has no loop around 0 . Assume towards contradiction that there is there is some closed path $\gamma \subset U$ around 0 . On the one hand,

$$
\eta(\phi \circ \gamma, 0)=\int_{\phi \circ \gamma} \frac{1}{z} d z \neq 0 .
$$

On the other hand,

$$
\int_{\phi \circ \gamma} \frac{1}{z} d z=\int_{\gamma} \frac{\phi^{\prime}(z)}{\phi(z)}=2 \pi i(N-P)
$$

from the argument principle. As ϕ has no zeros nor poles in U then this integral is 0 - a contradiction.

Question 2

Item b

We can see how many times the path $p\left(\partial B a l l_{1}(0)\right)$ by the winding number:

$$
\eta\left(p\left(\partial \operatorname{Ball}_{1}(0)\right), 0\right)=\frac{1}{2 \pi i} \int_{p\left(\partial \text { Ball }_{1}(0)\right)} \frac{1}{z} d z
$$

This is equal to

$$
\int_{p\left(\partial \operatorname{Ball}_{1}(0)\right)} \frac{1}{z} d z=\int_{\partial \operatorname{Ball}_{1}(0)} \frac{p^{\prime}(z)}{p(z)} d z
$$

and by the argument principle this is equal to the number of zeros minus the number of poles in the unit ball (note that $p(z)$ has no zero's in $\partial \operatorname{Ball}_{1}(0)$ thus we can indeed use the argument principle). $p(z)$ has no poles so

$$
\eta\left(p\left(\partial \operatorname{Ball}_{1}(0)\right), 0\right)=N_{\text {Ball }_{1}(0)}
$$

Note that on the boundary $\partial \operatorname{Ball}_{1}(0)=\{z:|z|=1\}$

$$
\left|3 z^{3}\right| \geq\left|z^{10}+1\right|
$$

Thus by Roche's Lemma, the number of zeros that $p(z)=\left(3 z^{3}\right)+\left(z^{10}+1\right)$ has in the ball is equal to the number of zeros that $3 z^{3}$ has in the ball - i.e. 3 zeros.

Thus we conclude that $p\left(\partial B a l l_{1}(0)\right)$ circles 0 three times.

Item c

Denote $f(z)=\frac{p(z)}{q(z)}$. Note that $\bar{f}(\bar{z})$ is also analytic (why?), which implies that $\bar{f}(1 / \bar{z})$ is also analytic. But

$$
\bar{f}(1 / \bar{z})=\bar{f}(z)=f(z)
$$

(initially this is true on the boundary of the ball since there f is real, but from the uniqueness theorem it is true in all \mathbb{C}). Thus in particular, if $f(z)=0$ then $f(1 / \bar{z})=0$ (and same for poles).

Now if $p(z) \neq 0$ for any $|z|=1$, we can say a bit more:
For $\gamma:[0,2 \pi] \rightarrow \mathbb{C}, \gamma=e^{i t}$ the canonical parametrization for the unit circle, $f \circ \gamma(t) \in \mathbb{R}$. Thus the winding number of 0

$$
\eta(f \circ \gamma, 0)=\int_{f \circ \gamma} \frac{1}{z} d z=0
$$

Thus by the argument principle in $\operatorname{Ball}_{1}(0)$ the number of zeros and the number of poles is equal.

Item e

See solution in last Tirgul.

Question 3

Item b

As seen before, when $\operatorname{ord}_{z_{0}}(f)=p$ we can write $f(z)=\left[\left(z-z_{0}\right) h(z)\right]^{p}$, where h is some analytic function and $h\left(z_{0}\right) \neq 0$ in some local neighbourhood around z_{0}.

The inner function $g(z)=\left(z-z_{0}\right) h(z)$ has a derivative $g^{\prime}\left(z_{0}\right)=h\left(z_{0}\right) \neq 0$ thus is conformal at z_{0}. Hence we can change to local coordinates and take $f(z)=z^{p}$. For any γ_{1}, γ_{2} who intersect at z_{0}, and have angle

$$
\angle\left(\gamma_{1}, \gamma_{2}\right)=\alpha
$$

Then

$$
\angle\left(\gamma_{1}(t)^{p}, \gamma_{2}(t)^{p}\right)=p \alpha .
$$

Indeed, when $h(z)=z^{p}$ then $h\left(r e^{i \theta}\right)=r^{p} e^{i(p \theta)}$ the function $z \mapsto z^{p}$ multiplies angles by a factor of p and thus

$$
\angle\left(\gamma_{1}(t)^{p}, \gamma_{2}(t)^{p}\right)=p \alpha .
$$

Question 4

Item c

$\mathrm{TL} ; \mathrm{DR}-\operatorname{take} T_{a} \circ S_{b-a d} \circ I n v \circ T_{d}$ (and check at home that this works).
Longer explanation (or - how we found these specific transformations):
Without loss of generality we can assume that $c=1$ (why?). First we would like to get $z+d$ in the denominator, so we take the following elementary transformations:

$$
I n v \circ T_{d}(z)=\frac{1}{z+d}
$$

. Now we note that for any constant K

$$
K+\frac{1}{z+d}=\frac{K z+K d}{z+d}
$$

So at the end we would like to have apply T_{a}. If we would apply T_{a} directly we would get

$$
T_{a} \circ I n v \circ T_{d}(z)=\frac{a z+a d}{z+d}
$$

and to fix this we apply $S_{b-a d}$ before T_{a} and get

$$
T_{a} \circ S_{a d-b} \circ I n v \circ T_{d}(z)=\frac{a z+b}{z+d}
$$

As we assume that $a d-b c=a d-b \neq 0$ these are all elementary transformations.

Item e

Note that if $c=0$ then f is a linear transformation and then the proof is direct (check at home).
Let's prove for the case where $c \neq 0$. From item c, we can write

$$
f(z)=T_{a} \circ S_{b-a d} \circ I n v \circ T_{d}
$$

where $T_{a}, S_{b-a d}, T_{d}$ all send circles/lines to circles/lines, so it is enough to show that $g(z)=\frac{1}{z}$ sends circles/lines to circles/lines.

A line or circle in \mathbb{R}^{2} are presented by $\tilde{a}\left(x^{2}+y^{2}\right)+\tilde{b} x+\tilde{c} y+\tilde{d}=0$ (if $\tilde{a}=0$ then a line, otherwise a circle). Furthermore, notice that for any $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d} \in \mathbb{R}$ this equation defines a line, a circle, a point (e.g. $x^{2}+y^{2}=0$) or the empty set (e.g. $x^{2}+y^{2}+1=0$.

Thus in \mathbb{C} we have a line or circle represented as

$$
a z \bar{z}+b z+c \bar{z}+d=0
$$

By dividing by $\bar{z} z$ we see that this equation holds if and only if for $w=f(z)=\frac{1}{z}$:

$$
a+b \bar{w}+c w+d w \bar{w}=0 .
$$

This is not a point or the empty set, since the original equation has infinitely many satisfying points, that also satisfy the new equation in w. Thus we get either a line or a circle.

