
Selected Answers to HW 2

HW 2

Question 2

Item a

i The proof here is the same as the proof in Calculus I. We need to show that

lim
z→z0

f(z)g(z) − f(z0)g(z0)
z − z0

= f(z0)g
′(z0) + f ′(z0)g(z0).

Indeed:

lim
z→z0

f(z)g(z) − f(z0)g(z0)
z − z0

=

lim
z→z0

f(z)g(z) − f(z0)g(z) + f(z0)g(z) − f(z0)g(z0)
z − z0

=

lim
z→z0

f(z0)
g(z) − g(z0)

z − z0
+

f(z) − f(z0)
z − z0

g(z).

From limit arithmetics rules and the fact that

lim
z→z0

f(z) − f(z0)
z − z0

= f ′(z0), lim
z→z0

g(z) − g(z0)
z − z0

= g′(z0), lim
z→z0

g(z) = g(z0),

we get that the limit above is equal to f(z0)g′(z0) + f ′(z0)g(z0).

ii First we calculate the derivative of h(z). Later on in the course we’ll do so immediately, but for now

let’s see how to do it from the definition (just as in the real case). Define h(z) = 1
z , h : C \ {0} → C.

We show by definition that this function is differentible and it’s derivative is −1
z2 .

lim
z→z0

h(z) − h(z0)
z − z0

−
−1
z2
0

= lim
z→z0

1
z − z0

(
1
z
−

1
z0

+
z − z0

z2
0

)

= lim
z→z0

1
z − z0

(
z2
0 − z0z + z2 − z0z

z2
0z

)

=

lim
z→z0

z − z0

z2
0z

= 0.

Now to calculate the derivative of f(z)
g(z) we can just use the multiplication rule we proved previously

and the chain rule we’ll prove below to get that:

(
f(z)
g(z)

)′

=
f ′(z)g(z) − g′(z)f(z)

g2(z)
.
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Item b

The composed function We are familiar with the chain rule for functions f : R2 → R2. Denote by

f = u + iv, g = û + iv̂

and

f(g(x + iy)) = u(û, v̂) + iv(û, v̂).

then we represent Jacobian matrix by

f ′(g(x + iy)) =

[
ux uy

vx vy

]

g′(x + iy) =

[
ûx ûy

v̂x v̂y

]

.

Then f(g(z)) is differentiable (as a function to R2 and its differential is the multiplication of these

matrices, i.e.

(f(g(z))′ =

[
uxûx + uy v̂x uyûx + vyûy

uy v̂x + vxv̂y uy v̂x + vy v̂y

]

.

By C-R equations for f, g we can change ux = vy, uy = −vx (and the same for û, v̂) and get:

(f(g(z))′ =

[
uxûx − uyûy uyûx + uxûx

−uyûy − uyûx −uyûy + uxûx

]

.

The four coordinates are the derivatives of the composed real and imaginary parts of f(g(z)). As we can

see the composed function’s partial derivatives also satisfy C-R equations. From the theorem we saw in

class, it is also differentiable in the complex sense.

Direct calculations show that (f(g(z))′ = f ′(g(z))g′(z) (check at home that what we got in the matrix

matches what we get when we multiply directly).

Item c

i Let

f(z) =
ix + 1

y
= u(x, y) + iv(x, y),

where u(x, y) = 1
y and v(x, y) = x

y . Then

ux(x, y) = 0 = vy(x, y) =
−x

y2
⇐⇒ x = 0

uy(x, y) =
−1
y2

= −vx(x, y) =
−1
y

⇐⇒ y = y2 ⇐⇒ y = 0, 1

so the only point in the domain of f for which the C-R equations hold is x = 0, y = 1 and it is

C−differentiable as u, v are differentiable at (0, 1) =⇒ f is C−differentiable in {i}.

ii One can use the C-R equations for f , but we can use another trick: if f is C−differentiable at z0 6= 0,

then using arithmetics we know that f(z)
z = Re(z) is C−differentiable at z0, hence the C-R equations

hold:

Re(z) = x + i0 =⇒ ux = 1 = vy = 0

and that is a contradiction; So f is not C−differentiable at z0 6= 0. However,

lim
z→0

f(z) − f(0)
z

= lim
z→0

Re(z) = 0

so f is C−differentiable at 0.
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iii Let f(z) = u(x, y) + iv(x, y) where

u(x, y) = cos(x) cosh(y), v(x, y) = − sin(x) sinh(y).

Recall that (cosh(x))′ = sinh(x) and (sinh(x))′ = cosh(x), then

ux = − sin(x) cosh(y) = vy, uy = cos(x) sinh(y) = −vx,

so the C-R equations hold for all points in C. Moreover, the functions u, v are differentiable in R2

and therefore f is C−differentiable (hence analytic) in C.

Item d

We write f(x + iy) = u(x, y) + iv(x, y). Then x = rcos(φ), y = rsin(φ). Hence

f(r, φ) = u(rcos(φ), rsin(φ)) + iv(rcos(φ), rsin(φ)).

We differentiate by r and by φ using the chain rule:

∂f

dr
=

∂f

dx

∂x

dr
+

∂f

dy

∂y

dr
,

∂f

dφ
=

∂f

dx

∂x

dφ
+

∂f

dy

∂y

dφ
.

Indeed
∂f

dr
= (ux + ivx)cos(φ) + (uy + ivy)sin(φ).

∂f

dφ
= (ux + ivx)(−rsin(φ)) + (uy + ivy)rcos(φ).

ir
∂f

dr
= (iux − vx)rcos(φ) + (iuy − vy)rsin(φ).

We rearrange ir ∂f
dr using C − R and get

ir
∂f

dr
= (ux + ivx)(−rsin(φ)) + (uy + ivy)rcos(φ) =

∂f

dφ
.

Question 3

Recall that ex+iy = ex
(
cos(x) + i sin(x)

)
.

item a

Let us write 1 + i in its polar coordinates:

r =
√

1 + 1 =
√

2, θ = arctan(1) =
π

4
+ πk, k ∈ Z =⇒ 1 + i =

√
2eiπ/4

Write z = x + iy, then

ez = 1 + i ⇐⇒ exeiy =
√

2eiπ/4 ⇐⇒
ex

√
2
ei(y−π/4) = 1

⇐⇒
ex

√
2

= 1, y −
π

4
= 2πk, k ∈ Z ⇐⇒ x = ln

√
2, y =

π

4
+ 2πk, k ∈ Z

⇐⇒ z = ln
√

2 + i(
π

4
+ 2πk), k ∈ Z.
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item b

i Let z = xz + iyz and w = xw + iyw. Then

ez+w = e(xz+xw)+i(yz+yw) = exz+xw(cos(yz + yw) + i sin(yz + yw)) =

recall that

cos(yz + yw) = cos(yz) cos(yw) − sin(yz) sin(yw)

and

sin(yz + yw) = sin(yz) cos(yw) + cos(yz) sin(yw),

so

ez+w = exzexw
(
cos(yz) cos(yw) − sin(yz) sin(yw) + i(sin(yz) cos(yw) + cos(yz) sin(yw)

)

= exz
(
cos(yz) + i sin(yz)

)
exw
(
cos(yw) + i sin(yw)

)
= ezew.

ii Using part i) and induction, or alternatively using de Moivre:

(ez)n =
(
ex(cos(y) + i sin(y))

)n
= exn

(
cos(y) + i sin(y)

)n

= exn
(
cos(ny) + i sin(ny)

)
= exn+iyn = enz.

iii We have

ez = ex(cos(y) + i sin(y)) = ex(cos(y) − i sin(y)) = ex(cos(−y) + i sin(−y)) = ex−iy = ez.

iv We have

|ez| = |ex| ∙ | cos(y) + i sin(y)| = ex.

v We have

ez+2πi = eze2πi = ez(cos(2π) + i sin(2π)) = ez.

item d

If x ∈ 2πZ, then eix = 1 and hence the sum is equal n + 1. Let x ∈ R \ {2πZ}, then eix 6= 1 and hence

n∑

k=0

eikx =
n∑

k=0

(eix)k =
1 − (eix)n+1

1 − eix
=

1 − eix(n+1)

1 − eix
=

(1 − eix(n+1))(1 − e−ix)
(1 − eix)(1 − e−ix)

=
1 − e−ix − eix(n+1) + eixn

(1 − cos(x))2 + sin2(x)
=

1 − e−ix − eix(n+1) + eixn

2 − 2 cos(x)
(0.1)

which implies that

∣
∣
∣
∣
∣

n∑

k=0

eikx

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
1 − eix(n+1)

1 − eix

∣
∣
∣
∣ ≤

2
√

4 sin2
(

x
2

) =
1

sin
(

x
2

) .
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item e

i Using (0.1), we have

n−1∑

k=0

cos(a + kb) = Re

(
n−1∑

k=0

ei(a+kb)

)

= Re

(

eia
n−1∑

k=0

(eib)k

)

= Re

(

eia 1 − e−ib − eibn + eib(n−1)

2 − 2 cos(b)

)

=
cos(a)(1 − cos(b) − cos(bn) + cos(b(n − 1))) − sin(a)(sin(b) − sin(bn) + sin(b(n − 1)))

2 − 2 cos(b)
.

ii

n∑

k=0

(
n

k

)

cos(a + kb) =
n∑

k=0

(
n

k

)

Re
(
ei(a+kb)

)
= Re

(

eia
n∑

k=0

(
n

k

)

(eib)k

)

= Re
(
eia(eib + 1)n

)

= Re
(
eia(ei b

2 )n(ei b
2 + e−i b

2 )n
)

= Re

(

ei(a+ bn
2 )2n cosn

(
b

2

))

= 2n cosn

(
b

2

)

cos

(

a +
bn

2

)

iii If t ∈ 2πZ, then eit = 1 and hence the limit is equal to 1. Otherwise, eit 6= 1 implies, using (0.1),

that

∣
∣
∣
∣
1 + eit + . . . + enit

n

∣
∣
∣
∣ =

∣
∣
∣
∣
1 − e−it − eit(n+1) + eitn

(2 − 2 cos(t))n

∣
∣
∣
∣ ≤

4
(2 − 2 cos(t))n

thus by the sandwich rule, our limit is equal to 0.

item f

Let f(z) = ez = u(x, y) + iv(x, y), where

u(x, y) = ex cos(y), v(x, y) = ex sin(y).

Thus we have the C-R equations

ux = ex cos(y) = vy, uy = −ex sin(y) = −vx

for every (x, y) ∈ R2 and clearly u, v are differentiable in R2, hence f is C−differentiable in C. Moreover,

for every z = x + iy, we have

f ′(z) = ux(x, y) + ivx(x, y) = ex cos(y) + iex sin(y) = ex
(
cos(y) + i sin(y)

)
= ez.

item g

Let 0 6= w = reiθ ∈ C and z ∈ C; Write 1
z = x + iy, thus

e
1
z = w ⇐⇒ ex = r, y = θ + 2πn, n ∈ Z ⇐⇒ x = ln(r), y = θ + 2πn, n ∈ Z

If we denote

zn =
1

ln(r) + i(θ + 2πn)
,

then f(zn) = w for every n ∈ Z while
∣
∣
∣ 1
zn

∣
∣
∣ = ln2(r)+(θ+2πn)2 → ∞ as n → ∞, meaning that for n ∈ N

large enough, we have
∣
∣
∣ 1
zn

∣
∣
∣ > 1

ε hence |zn| < ε. This shows that the mapping e
1
z : Ballε(0)\{0} → C\{0}

is onto and every w ∈ C \ {0} is achieved infinitely many times. Moreover, the sequence zn we built

above is satisfying zn → 0, while f(zn) = w, so clearly the limit limz→0 e
1
z does not exist!

5



Question 4

Define

cos(z) =
eiz + e−iz

2
, sin(z) =

eiz − e−iz

2i
.

item a

Let

f(z) = cos(z) =
1
2
(eix−y + e−ix+y) =

1
2

(
e−y
(
cos(x) + i sin(x)

)
+ ey

(
cos(x) − i sin(x)

))

= u(x, y) + iv(x, y)

and

g(z) = sin(z) =
1
2i

(eix−y − e−ix+y) =
−i

2

(
e−y
(
cos(x) + i sin(x)

)
− ey

(
cos(x) − i sin(x)

))

= ũ(x, y) + iṽ(x, y)

where

u(x, y) =
1
2
(e−y + ey) cos(x) = cos(x) cosh(y), v(x, y) =

1
2
(e−y − ey) sin(x) = − sin(x) sinh(y)

and

ũ(x, y) =
1
2
(e−y + ey) sin(x) = sin(x) cosh(y), ṽ(x, y) =

1
2
(ey − e−y) cos(x) = cos(x) sinh(y)

Check the C-R equations for f :

ux = −
1
2
(e−y + ey) sin(x) = vy = −ũ, uy =

1
2
(ey − e−y) cos(x) = −vx = ṽ

they hold everywhere in R2 and as u, v are differentiable in R2 (they have continuous derivatives) then

f is analytic in C and we have

f ′(z) = ux(x, y) + ivx(x, y) = −ũ(x, y) − iṽ(x, y) = −g(z) = sin(z)

Similarly, the C-R equations for g are

ũx =
1
2
(e−y + ey) cos(x) = ṽy = u, ũy =

1
2
(ey − e−y) sin(x) = −ṽx = −v

they hold everywhere in R2 and as ũ, ṽ are differentiable in R2 (they have continuous derivatives) then

g is analytic in C and we have

g′(z) = ũx(x, y) + iṽx(x, y) = u(x, y) + iv(x, y) = f(z) = cos(z).

• For every z = x + iy ∈ C we have

cos(z + 2π) =
ei(z+2π) + e−i(z+2π)

2
=

eiz + e−iz

2
= cos(z), as e2πi = 1,

− cos(z + π) = −
ei(z+π) + e−i(z+π)

2
= −

−eiz − e−iz

2
= cos(z), as eπi = −1,

sin
(
z +

π

2

)
=

ei(z+ π
2 ) − e−i(z+ π

2 )

2i
=

eizi − e−iz(−i)
2i

=
eiz + e−iz

2
= cos(z), as e

π
2 i = i.
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item b

We use eiz = cos(z) + i sin(z) and the facts that cos(−z) = cos(z), sin(−z) = − sin(z), to show that

cos(z + w) =
ei(z+w) + e−i(z+w)

2
=

eizeiw + e−ize−iw

2

=
(cos(z) + i sin(z))(cos(w) + i sin(w)) + (cos(z) − i sin(z))(cos(w) − i sin(w))

2

=
2 cos(z) cos(w) − 2 sin(z) sin(w)

2
= cos(z) cos(w) − sin(z) sin(w),

that

sin(z + w) =
ei(z+w) − e−i(z+w)

2i
=

eizeiw − e−ize−iw

2i

=
(cos(z) + i sin(z))(cos(w) + i sin(w)) − (cos(z) − i sin(z))(cos(w) − i sin(w))

2i

=
2i cos(z) sin(w) + 2i sin(z) cos(w)

2i
= cos(z) sin(w) + sin(z) cos(w),

that

cos2(z) =
e2iz + 2 + e−2iz

4
, sin2(z) =

e2iz − 2 + e−2iz

−4
=⇒ cos2(z) + sin2(z) = 1

=⇒ cos(2z) = cos2(z) − sin2(z) = 1 − 2 sin2(z) = 2 cos2(z) − 1

and

sin(2z) = cos(z) sin(z) + sin(z) cos(z) = 2 sin(z) cos(z).

item c

Already shown in the first part.

Question 5

Item a

We show that f is constant. Assume that a, b are not both 0 (otherwise the equation gives no information).

We differentiate the equation by x,y and get:

aux + bvx = 0,

auy + bvy = 0.

Apply C-R vx = −uy, vy = ux and get

aux − buy = 0,

auy + bux = 0.

We view this as a set of linear equations where the variables are ux, uy and the scalars are a, b. The

determinant of this set of equations is a2 + b2.

• If a2 + b2 6= 0, then the only solution is ux = uy = 0, hence u(x, y) is constant and by C-R, then

so is v(x, y) and f(z).

• Otherwise we get b = ±ia, for any a 6= 0. Thus aux = ±iuy. Both ux, uy are real hence the only

solution to these equations is still ux = uy = 0. Again u, v, f are constant.

7



Item b

i. If u(x, y) = x2 − y2, then

vy = ux = 2x =⇒ v(x, y) = 2xy + F (x),

− vx = −2y − F ′(x) = uy = −2y =⇒ F ′(x) = 0 =⇒ F (x) ≡ C, C ∈ R

thus

f(z) = (x2 − y2) + i(2xy + C) = (x + iy)2 + iC = z2 + iC.

iii. If f(z) = u(x) + iv(y), then

u′(x) = ux = vy = v′(y) =⇒ u′(x) = v′(y) ≡ C =⇒ u(x) = Cx + D, v(y) = Cy + E

uy = vx = 0,

thus

f(z) = (Cx + D) + i(Cy + E) = Cz + (D + iE).

iv. If |f(z)| = ey, then u2 + v2 = e2y, so

2uux + 2vvx = 0 =⇒ uux − vuy = 0,

2uuy + 2vvy = 2e2y =⇒ uuy + vux = e2y

so

(
u −v

v u

)(
ux

uy

)

=

(
0

e2y

)

=⇒

(
ux

uy

)

=
1

u2 + v2

(
u v

−v u

)(
0

e2y

)

=

(
v

u

)

=⇒ ux = v, uy = u.

Now,

uy = u =⇒ (e−yu)y = 0 =⇒ e−yu = F (x) =⇒ u = eyF (x),

so v = ux = eyF ′(x). Substitute in the second C-R equation to get

uy = −vx =⇒ eyF (x) = −eyF ′′(x) =⇒ F ′′(x) + F (x) = 0 =⇒ F (x) = a cos(x) + b sin(x),

thus

e2y = u2 + v2 = e2yF 2(x) + e2y(F ′)2(x)

= e2y(a2 cos2(x) + 2ab cos(x) sin(x) + b2 sin2(x) + a2 sin2(x) − 2ab cos(x) sin(x) + b2 cos2(x))

= e2y(a2 + b2) =⇒ a2 + b2 = 1

therefore

f(z) = ey(a cos(x)+b sin(x))+iey(−a sin(x)+b cos(x)) = ey(a(cos(x)−i sin(x))+b(sin(x)+i cos(x)))

=⇒ f(z) = ey(a + ib)(cos(x) − i sin(x)) = (a + ib)e−z

so f(z) = z0e
−z for |z0| = 1.
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