Selected Answers to HW 2

HW 2

Question 2

Item a

i The proof here is the same as the proof in Calculus I. We need to show that

$$
\lim _{z \rightarrow z_{0}} \frac{f(z) g(z)-f\left(z_{0}\right) g\left(z_{0}\right)}{z-z_{0}}=f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)+f^{\prime}\left(z_{0}\right) g\left(z_{0}\right)
$$

Indeed:

$$
\begin{gathered}
\lim _{z \rightarrow z_{0}} \frac{f(z) g(z)-f\left(z_{0}\right) g\left(z_{0}\right)}{z-z_{0}}= \\
\lim _{z \rightarrow z_{0}} \frac{f(z) g(z)-f\left(z_{0}\right) g(z)+f\left(z_{0}\right) g(z)-f\left(z_{0}\right) g\left(z_{0}\right)}{z-z_{0}}= \\
\lim _{z \rightarrow z_{0}} f\left(z_{0}\right) \frac{g(z)-g\left(z_{0}\right)}{z-z_{0}}+\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} g(z) .
\end{gathered}
$$

From limit arithmetics rules and the fact that

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=f^{\prime}\left(z_{0}\right), \lim _{z \rightarrow z_{0}} \frac{g(z)-g\left(z_{0}\right)}{z-z_{0}}=g^{\prime}\left(z_{0}\right), \lim _{z \rightarrow z_{0}} g(z)=g\left(z_{0}\right)
$$

we get that the limit above is equal to $f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)+f^{\prime}\left(z_{0}\right) g\left(z_{0}\right)$.
ii First we calculate the derivative of $h(z)$. Later on in the course we'll do so immediately, but for now let's see how to do it from the definition (just as in the real case). Define $h(z)=\frac{1}{z}, h: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$. We show by definition that this function is differentible and it's derivative is $\frac{-1}{z^{2}}$.

$$
\begin{gathered}
\lim _{z \rightarrow z_{0}} \frac{h(z)-h\left(z_{0}\right)}{z-z_{0}}-\frac{-1}{z_{0}^{2}}=\lim _{z \rightarrow z_{0}} \frac{1}{z-z_{0}}\left(\frac{1}{z}-\frac{1}{z_{0}}+\frac{z-z_{0}}{z_{0}^{2}}\right) \\
=\lim _{z \rightarrow z_{0}} \frac{1}{z-z_{0}}\left(\frac{z_{0}^{2}-z_{0} z+z^{2}-z_{0} z}{z_{0}^{2} z}\right)= \\
\lim _{z \rightarrow z_{0}} \frac{z-z_{0}}{z_{0}^{2} z}=0
\end{gathered}
$$

Now to calculate the derivative of $\frac{f(z)}{g(z)}$ we can just use the multiplication rule we proved previously and the chain rule we'll prove below to get that:

$$
\left(\frac{f(z)}{g(z)}\right)^{\prime}=\frac{f^{\prime}(z) g(z)-g^{\prime}(z) f(z)}{g^{2}(z)}
$$

Item b

The composed function We are familiar with the chain rule for functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Denote by

$$
f=u+i v, g=\hat{u}+i \hat{v}
$$

and

$$
f(g(x+i y))=u(\hat{u}, \hat{v})+i v(\hat{u}, \hat{v}) .
$$

then we represent Jacobian matrix by

$$
\begin{gathered}
f^{\prime}(g(x+i y))=\left[\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right] \\
g^{\prime}(x+i y)=\left[\begin{array}{ll}
\hat{u}_{x} & \hat{u}_{y} \\
\hat{v}_{x} & \hat{v}_{y}
\end{array}\right] .
\end{gathered}
$$

Then $f\left(g(z)\right.$) is differentiable (as a function to \mathbb{R}^{2} and its differential is the multiplication of these matrices, i.e.

$$
\left(f(g(z))^{\prime}=\left[\begin{array}{ll}
u_{x} \hat{u}_{x}+u_{y} \hat{v}_{x} & u_{y} \hat{u}_{x}+v_{y} \hat{u}_{y} \\
u_{y} \hat{v}_{x}+v_{x} \hat{v}_{y} & u_{y} \hat{v}_{x}+v_{y} \hat{v}_{y}
\end{array}\right] .\right.
$$

By C-R equations for f, g we can change $u_{x}=v_{y}, u_{y}=-v_{x}$ (and the same for \hat{u}, \hat{v}) and get:

$$
\left(f(g(z))^{\prime}=\left[\begin{array}{cc}
u_{x} \hat{u}_{x}-u_{y} \hat{u}_{y} & u_{y} \hat{u}_{x}+u_{x} \hat{u}_{x} \\
-u_{y} \hat{u}_{y}-u_{y} \hat{u}_{x} & -u_{y} \hat{u}_{y}+u_{x} \hat{u}_{x}
\end{array}\right] .\right.
$$

The four coordinates are the derivatives of the composed real and imaginary parts of $f(g(z))$. As we can see the composed function's partial derivatives also satisfy C-R equations. From the theorem we saw in class, it is also differentiable in the complex sense.

Direct calculations show that $\left(f(g(z))^{\prime}=f^{\prime}(g(z)) g^{\prime}(z)\right.$ (check at home that what we got in the matrix matches what we get when we multiply directly).

Item c

i Let

$$
f(z)=\frac{i x+1}{y}=u(x, y)+i v(x, y),
$$

where $u(x, y)=\frac{1}{y}$ and $v(x, y)=\frac{x}{y}$. Then

$$
\begin{aligned}
u_{x}(x, y)=0=v_{y}(x, y)=\frac{-x}{y^{2}} \Longleftrightarrow & x=0 \\
& u_{y}(x, y)=\frac{-1}{y^{2}}=-v_{x}(x, y)=\frac{-1}{y} \Longleftrightarrow y=y^{2} \Longleftrightarrow y=0,1
\end{aligned}
$$

so the only point in the domain of f for which the C-R equations hold is $x=0, y=1$ and it is \mathbb{C}-differentiable as u, v are differentiable at $(0,1) \Longrightarrow f$ is \mathbb{C}-differentiable in $\{i\}$.
ii One can use the C-R equations for f, but we can use another trick: if f is \mathbb{C}-differentiable at $z_{0} \neq 0$, then using arithmetics we know that $\frac{f(z)}{z}=\operatorname{Re}(z)$ is \mathbb{C}-differentiable at z_{0}, hence the C -R equations hold:

$$
\operatorname{Re}(z)=x+i 0 \Longrightarrow u_{x}=1=v_{y}=0
$$

and that is a contradiction; So f is not \mathbb{C}-differentiable at $z_{0} \neq 0$. However,

$$
\lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z}=\lim _{z \rightarrow 0} \operatorname{Re}(z)=0
$$

so f is \mathbb{C}-differentiable at 0 .
iii Let $f(z)=u(x, y)+i v(x, y)$ where

$$
u(x, y)=\cos (x) \cosh (y), v(x, y)=-\sin (x) \sinh (y)
$$

Recall that $(\cosh (x))^{\prime}=\sinh (x)$ and $(\sinh (x))^{\prime}=\cosh (x)$, then

$$
u_{x}=-\sin (x) \cosh (y)=v_{y}, u_{y}=\cos (x) \sinh (y)=-v_{x}
$$

so the C-R equations hold for all points in \mathbb{C}. Moreover, the functions u, v are differentiable in \mathbb{R}^{2} and therefore f is \mathbb{C}-differentiable (hence analytic) in \mathbb{C}.

Item d

We write $f(x+i y)=u(x, y)+i v(x, y)$. Then $x=r \cos (\phi), y=r \sin (\phi)$. Hence

$$
f(r, \phi)=u(r \cos (\phi), r \sin (\phi))+i v(r \cos (\phi), r \sin (\phi))
$$

We differentiate by r and by ϕ using the chain rule:

$$
\begin{aligned}
& \frac{\partial f}{d r}=\frac{\partial f}{d x} \frac{\partial x}{d r}+\frac{\partial f}{d y} \frac{\partial y}{d r} \\
& \frac{\partial f}{d \phi}=\frac{\partial f}{d x} \frac{\partial x}{d \phi}+\frac{\partial f}{d y} \frac{\partial y}{d \phi}
\end{aligned}
$$

Indeed

$$
\begin{gathered}
\frac{\partial f}{d r}=\left(u_{x}+i v_{x}\right) \cos (\phi)+\left(u_{y}+i v_{y}\right) \sin (\phi) \\
\frac{\partial f}{d \phi}=\left(u_{x}+i v_{x}\right)(-r \sin (\phi))+\left(u_{y}+i v_{y}\right) r \cos (\phi) . \\
i r \frac{\partial f}{d r}=\left(i u_{x}-v_{x}\right) r \cos (\phi)+\left(i u_{y}-v_{y}\right) r \sin (\phi)
\end{gathered}
$$

We rearrange $i r \frac{\partial f}{d r}$ using $C-R$ and get

$$
i r \frac{\partial f}{d r}=\left(u_{x}+i v_{x}\right)(-r \sin (\phi))+\left(u_{y}+i v_{y}\right) r \cos (\phi)=\frac{\partial f}{d \phi}
$$

Question 3

Recall that $e^{x+i y}=e^{x}(\cos (x)+i \sin (x))$.

item a

Let us write $1+i$ in its polar coordinates:

$$
r=\sqrt{1+1}=\sqrt{2}, \theta=\arctan (1)=\frac{\pi}{4}+\pi k, k \in \mathbb{Z} \Longrightarrow 1+i=\sqrt{2} e^{i \pi / 4}
$$

Write $z=x+i y$, then

$$
\begin{aligned}
e^{z}=1+i \Longleftrightarrow & \Longleftrightarrow e^{x} e^{i y}=\sqrt{2} e^{i \pi / 4} \Longleftrightarrow \frac{e^{x}}{\sqrt{2}} e^{i(y-\pi / 4)}=1 \\
& \Longleftrightarrow \frac{e^{x}}{\sqrt{2}}=1, y-\frac{\pi}{4}=2 \pi k, k \in \mathbb{Z} \Longleftrightarrow x=\ln \sqrt{2}, y=\frac{\pi}{4}+2 \pi k, k \in \mathbb{Z} \\
& \Longleftrightarrow z=\ln \sqrt{2}+i\left(\frac{\pi}{4}+2 \pi k\right), k \in \mathbb{Z}
\end{aligned}
$$

item b

i Let $z=x_{z}+i y_{z}$ and $w=x_{w}+i y_{w}$. Then

$$
e^{z+w}=e^{\left(x_{z}+x_{w}\right)+i\left(y_{z}+y_{w}\right)}=e^{x_{z}+x_{w}}\left(\cos \left(y_{z}+y_{w}\right)+i \sin \left(y_{z}+y_{w}\right)\right)=
$$

recall that

$$
\cos \left(y_{z}+y_{w}\right)=\cos \left(y_{z}\right) \cos \left(y_{w}\right)-\sin \left(y_{z}\right) \sin \left(y_{w}\right)
$$

and

$$
\sin \left(y_{z}+y_{w}\right)=\sin \left(y_{z}\right) \cos \left(y_{w}\right)+\cos \left(y_{z}\right) \sin \left(y_{w}\right)
$$

SO

$$
\begin{aligned}
& e^{z+w}=e^{x_{z}} e^{x_{w}}\left(\cos \left(y_{z}\right) \cos \left(y_{w}\right)-\sin \left(y_{z}\right) \sin \left(y_{w}\right)+i\left(\sin \left(y_{z}\right) \cos \left(y_{w}\right)+\cos \left(y_{z}\right) \sin \left(y_{w}\right)\right)\right. \\
&=e^{x_{z}}\left(\cos \left(y_{z}\right)+i \sin \left(y_{z}\right)\right) e^{x_{w}}\left(\cos \left(y_{w}\right)+i \sin \left(y_{w}\right)\right)=e^{z} e^{w}
\end{aligned}
$$

ii Using part i) and induction, or alternatively using de Moivre:

$$
\begin{aligned}
&\left(e^{z}\right)^{n}=\left(e^{x}(\cos (y)+i \sin (y))\right)^{n}=e^{x n}(\cos (y)+i \sin (y))^{n} \\
&=e^{x n}(\cos (n y)+i \sin (n y))=e^{x n+i y n}=e^{n z}
\end{aligned}
$$

iii We have

$$
\overline{e^{z}}=\overline{e^{x}(\cos (y)+i \sin (y))}=e^{x}(\cos (y)-i \sin (y))=e^{x}(\cos (-y)+i \sin (-y))=e^{x-i y}=e^{\bar{z}}
$$

iv We have

$$
\left|e^{z}\right|=\left|e^{x}\right| \cdot|\cos (y)+i \sin (y)|=e^{x} .
$$

v We have

$$
e^{z+2 \pi i}=e^{z} e^{2 \pi i}=e^{z}(\cos (2 \pi)+i \sin (2 \pi))=e^{z}
$$

item d

If $x \in 2 \pi \mathbb{Z}$, then $e^{i x}=1$ and hence the sum is equal $n+1$. Let $x \in \mathbb{R} \backslash\{2 \pi \mathbb{Z}\}$, then $e^{i x} \neq 1$ and hence

$$
\begin{align*}
\sum_{k=0}^{n} e^{i k x}=\sum_{k=0}^{n}\left(e^{i x}\right)^{k}=\frac{1-\left(e^{i x}\right)^{n+1}}{1-e^{i x}} & =\frac{1-e^{i x(n+1)}}{1-e^{i x}}=\frac{\left(1-e^{i x(n+1)}\right)\left(1-e^{-i x}\right)}{\left(1-e^{i x}\right)\left(1-e^{-i x}\right)} \\
& =\frac{1-e^{-i x}-e^{i x(n+1)}+e^{i x n}}{(1-\cos (x))^{2}+\sin ^{2}(x)}=\frac{1-e^{-i x}-e^{i x(n+1)}+e^{i x n}}{2-2 \cos (x)} \tag{0.1}
\end{align*}
$$

which implies that

$$
\left|\sum_{k=0}^{n} e^{i k x}\right| \quad=\quad \leq \frac{1-e^{i x(n+1)}}{1-e^{i x}} \left\lvert\, \quad=\quad \frac{2}{\sqrt{4 \sin ^{2}\left(\frac{x}{2}\right)}} \quad=\quad \frac{1}{\sin \left(\frac{x}{2}\right)}\right.
$$

item e

i Using (0.1), we have

$$
\begin{gathered}
\sum_{k=0}^{n-1} \cos (a+k b)=\operatorname{Re}\left(\sum_{k=0}^{n-1} e^{i(a+k b)}\right)=\operatorname{Re}\left(e^{i a} \sum_{k=0}^{n-1}\left(e^{i b}\right)^{k}\right)=R e\left(e^{i a} \frac{1-e^{-i b}-e^{i b n}+e^{i b(n-1)}}{2-2 \cos (b)}\right) \\
=\frac{\cos (a)(1-\cos (b)-\cos (b n)+\cos (b(n-1)))-\sin (a)(\sin (b)-\sin (b n)+\sin (b(n-1)))}{2-2 \cos (b)}
\end{gathered}
$$

ii

$$
\begin{aligned}
\sum_{k=0}^{n} & \binom{n}{k} \cos (a+k b)=\sum_{k=0}^{n}\binom{n}{k} \operatorname{Re}\left(e^{i(a+k b)}\right)=\operatorname{Re}\left(e^{i a} \sum_{k=0}^{n}\binom{n}{k}\left(e^{i b}\right)^{k}\right)=\operatorname{Re}\left(e^{i a}\left(e^{i b}+1\right)^{n}\right) \\
& =\operatorname{Re}\left(e^{i a}\left(e^{i \frac{b}{2}}\right)^{n}\left(e^{i \frac{b}{2}}+e^{-i \frac{b}{2}}\right)^{n}\right)=\operatorname{Re}\left(e^{i\left(a+\frac{b n}{2}\right)} 2^{n} \cos ^{n}\left(\frac{b}{2}\right)\right)=2^{n} \cos ^{n}\left(\frac{b}{2}\right) \cos \left(a+\frac{b n}{2}\right)
\end{aligned}
$$

iii If $t \in 2 \pi \mathbb{Z}$, then $e^{i t}=1$ and hence the limit is equal to 1 . Otherwise, $e^{i t} \neq 1$ implies, using (0.1), that

$$
\left|\frac{1+e^{i t}+\ldots+e^{n i t}}{n}\right| \quad=\quad\left|\frac{1-e^{-i t}-e^{i t(n+1)}+e^{i t n}}{(2-2 \cos (t)) n}\right| \quad \leq \quad \frac{4}{(2-2 \cos (t)) n}
$$

thus by the sandwich rule, our limit is equal to 0 .

item f

Let $f(z)=e^{z}=u(x, y)+i v(x, y)$, where

$$
u(x, y)=e^{x} \cos (y), v(x, y)=e^{x} \sin (y)
$$

Thus we have the C-R equations

$$
u_{x}=e^{x} \cos (y)=v_{y}, u_{y}=-e^{x} \sin (y)=-v_{x}
$$

for every $(x, y) \in \mathbb{R}^{2}$ and clearly u, v are differentiable in \mathbb{R}^{2}, hence f is \mathbb{C}-differentiable in \mathbb{C}. Moreover, for every $z=x+i y$, we have

$$
f^{\prime}(z)=u_{x}(x, y)+i v_{x}(x, y)=e^{x} \cos (y)+i e^{x} \sin (y)=e^{x}(\cos (y)+i \sin (y))=e^{z}
$$

item g

Let $0 \neq w=r e^{i \theta} \in \mathbb{C}$ and $z \in \mathbb{C}$; Write $\frac{1}{z}=x+i y$, thus

$$
e^{\frac{1}{z}}=w \Longleftrightarrow e^{x}=r, y=\theta+2 \pi n, n \in \mathbb{Z} \Longleftrightarrow x=\ln (r), y=\theta+2 \pi n, n \in \mathbb{Z}
$$

If we denote

$$
z_{n}=\frac{1}{\ln (r)+i(\theta+2 \pi n)}
$$

then $f\left(z_{n}\right)=w$ for every $n \in \mathbb{Z}$ while $\left|\frac{1}{z_{n}}\right|=\ln ^{2}(r)+(\theta+2 \pi n)^{2} \rightarrow \infty$ as $n \rightarrow \infty$, meaning that for $n \in \mathbb{N}$ large enough, we have $\left|\frac{1}{z_{n}}\right|>\frac{1}{\epsilon}$ hence $\left|z_{n}\right|<\epsilon$. This shows that the mapping $e^{\frac{1}{z}}: \operatorname{Ball} l_{\epsilon}(0) \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\}$ is onto and every $w \in \mathbb{C} \backslash\{0\}$ is achieved infinitely many times. Moreover, the sequence z_{n} we built above is satisfying $z_{n} \rightarrow 0$, while $f\left(z_{n}\right)=w$, so clearly the $\operatorname{limit} \lim _{z \rightarrow 0} e^{\frac{1}{z}}$ does not exist!

Question 4

Define

$$
\cos (z)=\frac{e^{i z}+e^{-i z}}{2}, \quad \sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}
$$

item a

Let

$$
\begin{aligned}
f(z)=\cos (z)=\frac{1}{2}\left(e^{i x-y}+e^{-i x+y}\right)=\frac{1}{2}\left(e^{-y}(\cos (x)+i \sin (x))+e^{y}(\cos (x)-\right. & i \sin (x))) \\
& =u(x, y)+i v(x, y)
\end{aligned}
$$

and

$$
\begin{aligned}
g(z)=\sin (z)=\frac{1}{2 i}\left(e^{i x-y}-e^{-i x+y}\right)=\frac{-i}{2}\left(e^{-y}(\cos (x)+i \sin (x))-e^{y}(\cos (x)-\right. & i \sin (x))) \\
& =\widetilde{u}(x, y)+i \widetilde{v}(x, y)
\end{aligned}
$$

where

$$
u(x, y)=\frac{1}{2}\left(e^{-y}+e^{y}\right) \cos (x)=\cos (x) \cosh (y), \quad v(x, y)=\frac{1}{2}\left(e^{-y}-e^{y}\right) \sin (x)=-\sin (x) \sinh (y)
$$

and

$$
\widetilde{u}(x, y)=\frac{1}{2}\left(e^{-y}+e^{y}\right) \sin (x)=\sin (x) \cosh (y), \quad \widetilde{v}(x, y)=\frac{1}{2}\left(e^{y}-e^{-y}\right) \cos (x)=\cos (x) \sinh (y)
$$

Check the C-R equations for f :

$$
u_{x}=-\frac{1}{2}\left(e^{-y}+e^{y}\right) \sin (x)=v_{y}=-\widetilde{u}, \quad u_{y}=\frac{1}{2}\left(e^{y}-e^{-y}\right) \cos (x)=-v_{x}=\widetilde{v}
$$

they hold everywhere in \mathbb{R}^{2} and as u, v are differentiable in \mathbb{R}^{2} (they have continuous derivatives) then f is analytic in \mathbb{C} and we have

$$
f^{\prime}(z)=u_{x}(x, y)+i v_{x}(x, y)=-\widetilde{u}(x, y)-i \widetilde{v}(x, y)=-g(z)=\sin (z)
$$

Similarly, the C-R equations for g are

$$
\widetilde{u}_{x}=\frac{1}{2}\left(e^{-y}+e^{y}\right) \cos (x)=\widetilde{v}_{y}=u, \quad \widetilde{u}_{y}=\frac{1}{2}\left(e^{y}-e^{-y}\right) \sin (x)=-\widetilde{v}_{x}=-v
$$

they hold everywhere in \mathbb{R}^{2} and as $\widetilde{u}, \widetilde{v}$ are differentiable in \mathbb{R}^{2} (they have continuous derivatives) then g is analytic in \mathbb{C} and we have

$$
g^{\prime}(z)=\widetilde{u}_{x}(x, y)+i \widetilde{v}_{x}(x, y)=u(x, y)+i v(x, y)=f(z)=\cos (z)
$$

- For every $z=x+i y \in \mathbb{C}$ we have

$$
\begin{aligned}
& \cos (z+2 \pi)=\frac{e^{i(z+2 \pi)}+e^{-i(z+2 \pi)}}{2}=\frac{e^{i z}+e^{-i z}}{2}=\cos (z), \quad \text { as } e^{2 \pi i}=1 \\
& -\cos (z+\pi)=-\frac{e^{i(z+\pi)}+e^{-i(z+\pi)}}{2}=-\frac{-e^{i z}-e^{-i z}}{2}=\cos (z), \quad \text { as } e^{\pi i}=-1, \\
& \sin \left(z+\frac{\pi}{2}\right)=\frac{e^{i\left(z+\frac{\pi}{2}\right)}-e^{-i\left(z+\frac{\pi}{2}\right)}}{2 i}=\frac{e^{i z} i-e^{-i z}(-i)}{2 i}=\frac{e^{i z}+e^{-i z}}{2}=\cos (z), \quad \text { as } e^{\frac{\pi}{2} i}=i .
\end{aligned}
$$

item b

We use $e^{i z}=\cos (z)+i \sin (z)$ and the facts that $\cos (-z)=\cos (z), \sin (-z)=-\sin (z)$, to show that

$$
\begin{aligned}
& \cos (z+w)=\frac{e^{i(z+w)}+e^{-i(z+w)}}{2}=\frac{e^{i z} e^{i w}+e^{-i z} e^{-i w}}{2} \\
& =\frac{(\cos (z)+i \sin (z))(\cos (w)+i \sin (w))+(\cos (z)-i \sin (z))(\cos (w)-i \sin (w))}{2} \\
& =\frac{2 \cos (z) \cos (w)-2 \sin (z) \sin (w)}{2}=\cos (z) \cos (w)-\sin (z) \sin (w),
\end{aligned}
$$

that

$$
\begin{gathered}
\sin (z+w)=\frac{e^{i(z+w)}-e^{-i(z+w)}}{2 i}=\frac{e^{i z} e^{i w}-e^{-i z} e^{-i w}}{2 i} \\
=\frac{(\cos (z)+i \sin (z))(\cos (w)+i \sin (w))-(\cos (z)-i \sin (z))(\cos (w)-i \sin (w))}{2 i} \\
=\frac{2 i \cos (z) \sin (w)+2 i \sin (z) \cos (w)}{2 i}=\cos (z) \sin (w)+\sin (z) \cos (w)
\end{gathered}
$$

that

$$
\begin{aligned}
\cos ^{2}(z)=\frac{e^{2 i z}+2+e^{-2 i z}}{4}, \sin ^{2}(z)= & \frac{e^{2 i z}-2+e^{-2 i z}}{-4} \Longrightarrow \cos ^{2}(z)+\sin ^{2}(z)=1 \\
& \Longrightarrow \cos (2 z)=\cos ^{2}(z)-\sin ^{2}(z)=1-2 \sin ^{2}(z)=2 \cos ^{2}(z)-1
\end{aligned}
$$

and

$$
\sin (2 z) \quad=\quad \cos (z) \sin (z) \quad+\quad \sin (z) \cos (z) \quad=\quad 2 \sin (z) \cos (z)
$$

item c

Already shown in the first part.

Question 5

Item a

We show that f is constant. Assume that a, b are not both 0 (otherwise the equation gives no information). We differentiate the equation by x, y and get:

$$
\begin{aligned}
& a u_{x}+b v_{x}=0 \\
& a u_{y}+b v_{y}=0 .
\end{aligned}
$$

Apply C-R $v_{x}=-u_{y}, v_{y}=u_{x}$ and get

$$
\begin{aligned}
& a u_{x}-b u_{y}=0, \\
& a u_{y}+b u_{x}=0 .
\end{aligned}
$$

We view this as a set of linear equations where the variables are u_{x}, u_{y} and the scalars are a, b. The determinant of this set of equations is $a^{2}+b^{2}$.

- If $a^{2}+b^{2} \neq 0$, then the only solution is $u_{x}=u_{y}=0$, hence $u(x, y)$ is constant and by C-R, then so is $v(x, y)$ and $f(z)$.
- Otherwise we get $b= \pm i a$, for any $a \neq 0$. Thus $a u_{x}= \pm i u_{y}$. Both u_{x}, u_{y} are real hence the only solution to these equations is still $u_{x}=u_{y}=0$. Again u, v, f are constant.

Item b

i. If $u(x, y)=x^{2}-y^{2}$, then

$$
\begin{aligned}
v_{y}=u_{x}=2 x \Longrightarrow v(x, y) & =2 x y+F(x) \\
& -v_{x}=-2 y-F^{\prime}(x)=u_{y}=-2 y \Longrightarrow F^{\prime}(x)=0 \Longrightarrow F(x) \equiv C, C \in \mathbb{R}
\end{aligned}
$$

thus

$$
f(z)=\left(x^{2}-y^{2}\right)+i(2 x y+C)=(x+i y)^{2}+i C=z^{2}+i C .
$$

iii. If $f(z)=u(x)+i v(y)$, then

$$
\begin{aligned}
& u^{\prime}(x)=u_{x}=v_{y}=v^{\prime}(y) \Longrightarrow u^{\prime}(x)=v^{\prime}(y) \equiv C \Longrightarrow u(x)=C x+D, v(y)=C y+E \\
& \quad u_{y}=v_{x}=0,
\end{aligned}
$$

thus

$$
f(z)=(C x+D)+i(C y+E)=C z+(D+i E)
$$

iv. If $|f(z)|=e^{y}$, then $u^{2}+v^{2}=e^{2 y}$, so

$$
2 u u_{x}+2 v v_{x}=0 \Longrightarrow u u_{x}-v u_{y}=0, \quad 2 u u_{y}+2 v v_{y}=2 e^{2 y} \Longrightarrow u u_{y}+v u_{x}=e^{2 y}
$$

so

$$
\left(\begin{array}{cc}
u & -v \\
v & u
\end{array}\right)\binom{u_{x}}{u_{y}}=\binom{0}{e^{2 y}} \Longrightarrow\binom{u_{x}}{u_{y}}=\frac{1}{u^{2}+v^{2}}\left(\begin{array}{cc}
u & v \\
-v & u
\end{array}\right)\binom{0}{e^{2 y}}=\binom{v}{u} \Longrightarrow u_{x}=v, u_{y}=u
$$

Now,

$$
u_{y}=u \Longrightarrow\left(e^{-y} u\right)_{y}=0 \Rightarrow e^{-y} u=F(x) \Longrightarrow u=e^{y} F(x)
$$

so $v=u_{x}=e^{y} F^{\prime}(x)$. Substitute in the second C-R equation to get

$$
u_{y}=-v_{x} \Longrightarrow e^{y} F(x)=-e^{y} F^{\prime \prime}(x) \Longrightarrow F^{\prime \prime}(x)+F(x)=0 \Longrightarrow F(x)=a \cos (x)+b \sin (x),
$$

thus

$$
\begin{aligned}
& e^{2 y}=u^{2}+v^{2}=e^{2 y} F^{2}(x)+e^{2 y}\left(F^{\prime}\right)^{2}(x) \\
& \begin{aligned}
=e^{2 y}\left(a^{2} \cos ^{2}(x)+2 a b \cos (x) \sin (x)+b^{2} \sin ^{2}(x)+a^{2} \sin ^{2}(x)-\right. & \left.2 a b \cos (x) \sin (x)+b^{2} \cos ^{2}(x)\right) \\
& =e^{2 y}\left(a^{2}+b^{2}\right) \Longrightarrow a^{2}+b^{2}=1
\end{aligned}
\end{aligned}
$$

therefore

$$
\begin{array}{r}
f(z)=e^{y}(a \cos (x)+b \sin (x))+i e^{y}(-a \sin (x)+b \cos (x))=e^{y}(a(\cos (x)-i \sin (x))+b(\sin (x)+i \cos (x))) \\
\Longrightarrow f(z)=e^{y}(a+i b)(\cos (x)-i \sin (x))=(a+i b) e^{-z}
\end{array}
$$

so $f(z)=z_{0} e^{-z}$ for $\left|z_{0}\right|=1$.

