Selected Answers to HW 3

HW 3

Question 1

Item a

if u is constant, then $u_{x}, u_{y} \equiv 0$ in all points in the domain. From the $C-R$ equations, then $v_{x}=-u_{y}=$ $0, v_{y}=u_{x}=0$ in all points, thus v is also a constant and so is $f=u+i v$.

Item b

See notes of third review class (or use item c for $p\left(t_{1}, t_{2}\right)=t_{1}^{2}+t_{2}^{2}$).

Item c

[The question didn't say so explicitly, but of course we assume that the polynomial is not a constant, otherwise it is meaningless.] We prove the claim by induction on n, the degree of the polynomial $p\left(t_{1}, t_{2}\right)$.

- Base Case: For $n=1$, then $p(u, v)=a u+b v+c$. See the solution to the last question in HW.
- Induction Hypothesis: Assume that for all polynomials $q\left(t_{1}, t_{2}\right)$ of degree $n>1$, if $q(u(x, y), v(x, y))$ is constant then u, v are constant.
- Induction Step: Let $p\left(t_{1}, t_{2}\right)$ be a polynomial of degree $n+1$, we shall prove, assuming the induction hypothesis that if $p(u, v)$ is constant then u, v are constant.

The function $g(x, y)=p(u(x, y), v(x, y))$ is constant. Hence

$$
\frac{\partial g}{d x}=\frac{\partial g}{d y}=0
$$

in every point. We use the chain rule:

$$
\begin{aligned}
& \frac{\partial g}{d x}=\frac{\partial p}{d u} \frac{\partial u}{d x}+\frac{\partial p}{d v} \frac{\partial v}{d x}=0 \\
& \frac{\partial g}{d y}=\frac{\partial p}{d u} \frac{\partial u}{d y}+\frac{\partial p}{d v} \frac{\partial v}{d y}=0
\end{aligned}
$$

We use C-R to substitute $v_{x}=-u_{y}, v_{y}=u_{x}$.

$$
\begin{align*}
& \frac{\partial p}{d t_{1}} u_{x}-\frac{\partial p}{d t_{2}} u_{y}=0 \tag{0.1}\\
& \frac{\partial p}{d t_{1}} u_{y}+\frac{\partial p}{d t_{2}} u_{x}=0 . \tag{0.2}
\end{align*}
$$

For every point $u(x, y), v(x, y)$ you can see this as a linear equation with different coefficients. The determinant of the coefficient matrix of the linear equations is

$$
D(x, y)={\frac{\partial p^{2}}{d t_{1}}}^{2}+{\frac{\partial p^{2}}{d t_{2}}}^{2}
$$

- If $\frac{\partial p}{d t_{1}}{ }^{2}+{\frac{\partial p}{d t_{2}}}^{2}$ is the zero polynomial, then since p has real coefficients, it implies that both

$$
\left.\frac{\partial p}{d t_{1}}\right|_{u(x, y), v(x, y)}=\left.\frac{\partial p}{d t_{2}}\right|_{u(x, y), v(x, y)}=0
$$

At least one of them is a (non-constant) polynomial of degree n, that is equal to zero. By our induction hypothesis, we get that u, v are constant.

- Otherwise $D(x, y)$ is not the zero polynomial, and in particular, this means that the set of pairs (x, y) where it is not equal to 0 is open and dense in the domain. Thus in that set the only solutions to the equations (0.1) is that $u_{x}, u_{y}=0$ in that set. This implies that u, v are constnat in this set. From continuity, we get that they are constant in all the domain.

Question 5

Item a

No, take for example

$$
f(x+i y)=e^{-x}(\cos (y)+i \sin (y)) .
$$

Item b

The proof to this question is the same as the proof for the same question in \mathbb{R}. Denote $g(z)=e^{-z} f(z)$. Then

$$
g^{\prime}(z)=f^{\prime}(z) e^{-z}-f(z) e^{-z} .
$$

Notice that we are using here the following "differentiation arithmetic":

- $\left(e^{z}\right)^{\prime}=e^{z}$
- $(a(z) b(z))^{\prime}=a^{\prime}(z) b(z)+a(z) b^{\prime}(z)$
- $a(b(z))=a^{\prime}(b(z)) b^{\prime}(z)$.

From our assumption $f^{\prime}(z)=f(z)$, thus $g^{\prime}(z)=0$, is 0 . Hence $g(z)$ is a constant function. From the assumption that $f(0)=1$, then so does $g(0)=1$, thus $f(z)=e^{-z}$.

Question 6

Item a

i False. It might not be defined, e.g. $\sqrt{i^{2}}$.
ii True. The n-th root is an inverse function of z^{n}, hence if it is defined on z, then by definition $(\sqrt[n]{z})^{n}=z$.
iii True, $e^{2 \pi i}=1$.
iv False, again this might not be defined, e.g. $z=\sqrt{i}, w=\sqrt{i}$.
v False. e.g. when we represent $-\pi \leq \theta<\pi$ and $\sqrt{r e^{i \theta}}=\sqrt{r} e^{i \frac{\theta}{2}}$, and $z=w=e^{i \frac{3 \pi}{4}}$.
vi True. If $\operatorname{Re}(z), \operatorname{Re}(w)>0$, then $-\pi / 2<\arg (z), \arg (w)<\pi / 2$, and in particular $-\pi<\arg (z w)<\pi$, i.e. the n-th root is defined, and the argument doesn't complete a full cycle - namely, the argument of the root will be $\frac{\arg (z w)}{n}=\frac{\arg (z)+\arg (w)}{n}$.

Item b

- Our domain is all $-\pi<\theta<\pi$, and $f\left(r e^{i \theta}\right)=\sqrt[n]{r} e^{i \theta / n}$. Thus our image is precisely

$$
\left\{r e^{i \theta}:-\pi / n<\theta<\pi / n\right\} .
$$

- If we parametrize $\operatorname{Ray}_{a, b}=\left\{r e^{i \theta}: r>0\right\}$ and θ is the argument of the ray, then it is sent to Ray $_{a^{\prime}, b^{\prime}}=\left\{r e^{i \theta / n}: r>0\right\}$.

Item c

Notice that $\left(e^{9 \pi i / 8}\right)^{4} \neq \frac{-1+i}{\sqrt{2}}$ thus there was an error in the question.

Item d

The complex inverse function theorem, that is implied by the real inverse function theorem, says that $\left(f^{-1}\right)^{\prime}(z)=\frac{1}{f^{\prime}(f-1(z))}$. Thus $(\sqrt[n]{z})^{\prime}=\frac{1}{n(\sqrt[n]{z})^{n-1}}$. In particular

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{z}{n(\sqrt[n]{z})^{n}}=\frac{1}{n}
$$

Item e

$$
\frac{f_{1}(z) f_{2}^{\prime}(z)}{f_{1}^{\prime}(z) f_{2}(z)}=\frac{z f_{1}(z) f_{2}^{\prime}(z)}{f_{1}^{\prime}(z) z f_{2}(z)}=1
$$

where the last equality is by item d.

Question 7

Item a

From the definition $f:[0, \pi] \rightarrow \mathbb{C}, f(z)=e^{i z}=\cos (z)+i \sin (z)$. Note that $\sin (z)=0$ only when $z=0, \pi$, thus no other real point exists in the image of f. Thus there is no point in $(f(0), f(\pi))=(-1,1) \subset \mathbb{C}$ in the image.

Item b

No. take the same function $f(z)$ as above. $\frac{f(\pi)-f(0)}{\pi-0}=\frac{2}{\pi}$. However, $f^{\prime}(z)=i e^{i} z$, a function whose norm is always 1 , hence $f^{\prime}(c) \neq \frac{2}{\pi}$ for all $c \in(0, \pi)$.

