Selected Answers to HW 3

HW 3

Question 1

Item a

if u is constant, then $u_x, u_y \equiv 0$ in all points in the domain. From the C - R equations, then $v_x = -u_y = 0$, $v_y = u_x = 0$ in all points, thus v is also a constant and so is f = u + iv.

Item b

See notes of third review class (or use item c for $p(t_1, t_2) = t_1^2 + t_2^2$).

Item c

[The question didn't say so explicitly, but of course we assume that the polynomial is not a constant, otherwise it is meaningless.] We prove the claim by induction on n, the degree of the polynomial $p(t_1, t_2)$.

- Base Case: For n = 1, then p(u, v) = au + bv + c. See the solution to the last question in HW.
- Induction Hypothesis: Assume that for all polynomials $q(t_1, t_2)$ of degree n > 1, if q(u(x, y), v(x, y)) is constant then u, v are constant.
- Induction Step: Let $p(t_1, t_2)$ be a polynomial of degree n + 1, we shall prove, assuming the induction hypothesis that if p(u, v) is constant then u, v are constant.

The function g(x, y) = p(u(x, y), v(x, y)) is constant. Hence

$$\frac{\partial g}{dx} = \frac{\partial g}{dy} = 0$$

in every point. We use the chain rule:

$$\frac{\partial g}{\partial x} = \frac{\partial p}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial p}{\partial v}\frac{\partial v}{\partial x} = 0$$
$$\frac{\partial g}{\partial y} = \frac{\partial p}{\partial u}\frac{\partial u}{\partial y} + \frac{\partial p}{\partial v}\frac{\partial v}{\partial y} = 0$$

We use C-R to substitute $v_x = -u_y, v_y = u_x$.

$$\frac{\partial p}{dt_1}u_x - \frac{\partial p}{dt_2}u_y = 0, \tag{0.1}$$

$$\frac{\partial p}{dt_1}u_y + \frac{\partial p}{dt_2}u_x = 0. \tag{0.2}$$

For every point u(x, y), v(x, y) you can see this as a linear equation with different coefficients. The determinant of the coefficient matrix of the linear equations is

$$D(x,y) = \frac{\partial p}{dt_1}^2 + \frac{\partial p}{dt_2}^2$$

- If $\frac{\partial p}{dt_1}^2 + \frac{\partial p}{dt_2}^2$ is the zero polynomial, then since p has real coefficients, it implies that both

$$\left.\frac{\partial p}{dt_1}\right|_{u(x,y),v(x,y)} = \left.\frac{\partial p}{dt_2}\right|_{u(x,y),v(x,y)} = 0.$$

At least one of them is a (non-constant) polynomial of degree n, that is equal to zero. By our induction hypothesis, we get that u, v are constant.

- Otherwise D(x, y) is not the zero polynomial, and in particular, this means that the set of pairs (x, y) where it is not equal to 0 is open and dense in the domain. Thus in that set the only solutions to the equations (0.1) is that $u_x, u_y = 0$ in that set. This implies that u, v are constant in this set. From continuity, we get that they are constant in all the domain.

Question 5

Item a

No, take for example

$$f(x+iy) = e^{-x}(\cos(y) + i\sin(y)).$$

Item b

The proof to this question is the same as the proof for the same question in \mathbb{R} . Denote $g(z) = e^{-z} f(z)$. Then

$$g'(z) = f'(z)e^{-z} - f(z)e^{-z}.$$

Notice that we are using here the following "differentiation arithmetic":

• $(e^z)' = e^z$

•
$$(a(z)b(z))' = a'(z)b(z) + a(z)b'(z)$$

•
$$a(b(z)) = a'(b(z))b'(z)$$
.

From our assumption f'(z) = f(z), thus g'(z) = 0, is 0. Hence g(z) is a constant function. From the assumption that f(0) = 1, then so does g(0) = 1, thus $f(z) = e^{-z}$.

Question 6

Item a

- i False. It might not be defined, e.g. $\sqrt{i^2}$.
- ii True. The *n*-th root is an inverse function of z^n , hence if it is defined on z, then by definition $(\sqrt[n]{z})^n = z$.
- iii True, $e^{2\pi i} = 1$.
- iv False, again this might not be defined, e.g. $z = \sqrt{i}, w = \sqrt{i}$.
- v False. e.g. when we represent $-\pi \leq \theta < \pi$ and $\sqrt{re^{i\theta}} = \sqrt{r}e^{i\frac{\theta}{2}}$, and $z = w = e^{i\frac{3\pi}{4}}$.
- vi True. If Re(z), Re(w) > 0, then $-\pi/2 < arg(z)$, $arg(w) < \pi/2$, and in particular $-\pi < arg(zw) < \pi$, i.e. the *n*-th root is defined, and the argument doesn't complete a full cycle - namely, the argument of the root will be $\frac{arg(zw)}{n} = \frac{arg(z) + arg(w)}{n}$.

Item b

• Our domain is all $-\pi < \theta < \pi$, and $f(re^{i\theta}) = \sqrt[n]{r}e^{i\theta/n}$. Thus our image is precisely

$$\left\{re^{i\theta}:-\pi/n<\theta<\pi/n\right\}.$$

• If we parametrize $Ray_{a,b} = \{re^{i\theta} : r > 0\}$ and θ is the argument of the ray, then it is sent to $Ray_{a',b'} = \{re^{i\theta/n} : r > 0\}.$

Item c

Notice that $(e^{9\pi i/8})^4 \neq \frac{-1+i}{\sqrt{2}}$ thus there was an error in the question.

Item d

The complex inverse function theorem, that is implied by the real inverse function theorem, says that $(f^{-1})'(z) = \frac{1}{f'(f^{-1}(z))}$. Thus $(\sqrt[n]{z})' = \frac{1}{n(\sqrt[n]{z})^{n-1}}$. In particular

$$\frac{zf'(z)}{f(z)} = \frac{z}{n(\sqrt[n]{z})^n} = \frac{1}{n}.$$

Item e

$$\frac{f_1(z)f_2'(z)}{f_1'(z)f_2(z)} = \frac{zf_1(z)f_2'(z)}{f_1'(z)zf_2(z)} = 1,$$

where the last equality is by item d.

Question 7

Item a

From the definition $f: [0, \pi] \to \mathbb{C}$, $f(z) = e^{iz} = \cos(z) + i\sin(z)$. Note that $\sin(z) = 0$ only when $z = 0, \pi$, thus no other real point exists in the image of f. Thus there is no point in $(f(0), f(\pi)) = (-1, 1) \subset \mathbb{C}$ in the image.

Item b

No. take the same function f(z) as above. $\frac{f(\pi)-f(0)}{\pi-0} = \frac{2}{\pi}$. However, $f'(z) = ie^i z$, a function whose norm is always 1, hence $f'(c) \neq \frac{2}{\pi}$ for all $c \in (0, \pi)$.