HOMEWORK SHEET 4: SOLUTIONS

INTRODUCTION TO COMPLEX ANALYSIS FOR ELECTRIC ENGINEERING

1. Question 1:

Let $\log (z)$ be the main branch ("Anaf Rashee") of the logarithm; Recall that $\log : \mathbb{C} \backslash \mathbb{R}_{-} \rightarrow \mathbb{C}$ is given by

$$
\log (z)=\ln (r)+i \theta
$$

where $z=r e^{i \theta}$ with $-\pi<\theta<\pi$.
a) Let $a, b \in \mathbb{R}$. Write $a+i b=r e^{i \theta}$ for $-\pi \leq \theta<\pi$ and $r \geq 0$, then

$$
\frac{a+i b}{a-i b}=\frac{r e^{i \theta}}{r e^{-i \theta}}=e^{2 \theta i}
$$

Therefore,

$$
\log \left(\frac{a+i b}{a-i b}\right)=\log \left(e^{2 \theta i}\right)= \begin{cases}2 \theta i & : \text { if }-\frac{\pi}{2}<\theta<\frac{\pi}{2} \\ (2 \theta-2 \pi) i & : \text { if } \frac{\pi}{2}<\theta<\pi \\ (2 \theta+2 \pi) i & : \text { if }-\pi<\theta<-\frac{\pi}{2}\end{cases}
$$

where $\theta=\arctan \left(\frac{b}{a}\right)$.
 both z_{1} and z_{2} in their polar coordinates $z_{1}=r_{1} e^{i \theta_{1}}, z_{2}=r_{2} e^{i \theta_{2}}$, thus

$$
\log \left(z_{1}\right)=\log \left(z_{2}\right) \Longrightarrow \ln \left(r_{1}\right)+i \theta_{1}=\ln \left(r_{2}\right)+i \theta_{2} \Longrightarrow \ln \left(r_{1}\right)=\ln \left(r_{2}\right), \theta_{1}=\theta_{2}
$$

and as \ln is $1-1$ in \mathbb{R}, we get that $r_{1}=r_{2}, \theta_{1}=\theta_{2} \Longrightarrow z_{1}=z_{2}$.

- Let $R a y_{a, b}=\left\{(a t, b t): t \in \mathbb{R}_{>0}\right\}$, then the image of \log on $R a y_{a . b}$ is given by

$$
\begin{aligned}
& \log \left(\operatorname{Ray}_{a, b}\right)=\left\{\log (a t+i b t): t \in \mathbb{R}_{>0}\right\}=\left\{\log \left(t \sqrt{a^{2}+b^{2}} e^{i \theta}\right): t \in \mathbb{R}_{>0}\right\} \\
&=\left\{\ln \left(t \sqrt{a^{2}+b^{2}}\right)+i \theta: t \in \mathbb{R}_{>0}\right\}=\{z: \operatorname{Im}(z)=\theta\}
\end{aligned}
$$

and this is exactly the line in \mathbb{C} where the imaginary part is equal to the constant $-\pi<\theta=\arctan \left(\frac{b}{a}\right)<\pi$.
c)(i) No. Take $z=2 \pi i$, so $\log \left(e^{2 \pi i}\right)=\log \left(e^{0 i}\right)=0 \neq 2 \pi i$.
(ii) Yes. Follows from the definition of $L o g$.
(iii) No. As in (i); take $z=0$, so $\log \left(e^{2 \pi i}\right)=0 \neq 2 \pi i$.

[^0](iv) Yes. Let $z=r e^{i \theta}$, with $-\pi<\theta<\pi$, then
\[

$$
\begin{aligned}
\log \left(\frac{1}{z}\right) & =\log \left(\frac{1}{r} e^{-i \theta}\right)=\ln \left(\frac{1}{r}\right)+(-i \theta)=-\ln (r)-i \theta=-\log (z), \\
\text { as }-\pi<\theta<\pi & \Longrightarrow-\pi<-\theta<\pi
\end{aligned}
$$
\]

(v) No. Take $z=w=e^{\frac{3}{4} \pi i}$, then
$\log (z w)=\log \left(e^{\frac{3}{2} \pi i}\right)=\log \left(e^{-\frac{\pi}{2} i}\right)=-\frac{\pi}{2} i \neq \frac{3}{2} \pi i=2 \log \left(e^{\frac{3}{4} \pi i}\right)=\log (z)+\log (w)$.
(vi) Yes. Suppose $\operatorname{Re}(z), \operatorname{Re}(w)>0$, thus we can write $z=r_{1} e^{i \theta_{1}}, w=r_{2} e^{i \theta_{2}}$ where $-\frac{\pi}{2}<\theta_{1}, \theta_{2}<\frac{\pi}{2}$ and hence

$$
\begin{aligned}
\log (z w)=\log \left(r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}\right) & =\ln \left(r_{1} r_{2}\right)+i\left(\theta_{1}+\theta_{2}\right) \\
& =\ln \left(r_{1}\right)+i \theta_{1}+\ln \left(r_{2}\right)+i \theta_{2}=\log (z)+\log (w)
\end{aligned}
$$

where the second equality holds because $-\pi<\theta_{1}+\theta_{2}<\pi$.
d) No. Suppose there exists $F: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ analytic such that

$$
F^{\prime}(z)=\frac{1}{z}, \forall z \in \mathbb{C} \backslash\{0\}
$$

Consider the function $\log : \mathbb{C} \backslash \mathbb{R}_{-} \rightarrow \mathbb{C}$; we know that for every

$$
(\log)^{\prime}(z)=\frac{1}{z}, \forall z \in \mathbb{C} \backslash \mathbb{R}_{-},
$$

therefore $(F-\log)^{\prime}(z)=0$ for every $z \in \mathbb{C} \backslash \mathbb{R}_{-}$and hence

$$
\exists C \in \mathbb{C} \text { such that } F(z)-\log (z)=C, \forall z \in \mathbb{C} \backslash \mathbb{R}_{-}
$$

From the assumption, the function F is continuous at $z=-1$ and so we must have

$$
F(-1)=\lim _{\theta \rightarrow \pi^{-}} F\left(e^{i \theta}\right)=\lim _{\theta \rightarrow-\pi^{+}} F\left(e^{i \theta}\right)
$$

but for every $-\pi<\theta<\pi, F\left(e^{i \theta}\right)=\log \left(e^{i \theta}\right)+C=i \theta+C$, therefore we get

$$
F(-1)=\lim _{\theta \rightarrow \pi^{-}}(i \theta+C)=i \pi+C=\lim _{\theta \rightarrow-\pi^{+}}(i \theta+C)=-i \pi+C
$$

which is clearly a contradiction.

2. Question 2.

a)(i) Yes. $\sum_{n=0}^{\infty} z_{n}$ converges \Longleftrightarrow the sequence $a_{N}=\sum_{n=0}^{N} z_{n}$ converges (by definition) \Longleftrightarrow the sequences

$$
\operatorname{Re}\left(a_{N}\right)=\sum_{n=0}^{N} \operatorname{Re}\left(z_{n}\right) \text { and } \operatorname{Im}\left(a_{N}\right)=\sum_{n=0}^{N} \operatorname{Im}\left(z_{n}\right)
$$

converge (see question 3.a)(i) in Exercise 1) $\Longleftrightarrow \sum_{n=0}^{\infty} \operatorname{Re}\left(z_{n}\right)$ and $\sum_{n=0}^{\infty} \operatorname{Im}\left(z_{n}\right)$ converge (definition of convergence in \mathbb{R}).
(ii) Yes. If $\sum_{n=0}^{\infty} z_{n}$ is absolutely converges, then $\sum_{n=0}^{\infty}\left|z_{n}\right|$ converges. As

$$
0 \leq\left|\operatorname{Re}\left(z_{n}\right)\right| \leq\left|z_{n}\right| \text { and } 0 \leq\left|\operatorname{Im}\left(z_{n}\right)\right| \leq\left|z_{n}\right|
$$

using the convergence theorems from Calculus in \mathbb{R}, we know that $\sum_{n=0}^{\infty}\left|\operatorname{Re}\left(z_{n}\right)\right|$ and $\sum_{n=0}^{\infty}\left|\operatorname{Im}\left(z_{n}\right)\right|$ converge $\Longrightarrow \sum_{n=0}^{\infty} \operatorname{Re}\left(z_{n}\right)$ and $\sum_{n=0}^{\infty} \operatorname{Im}\left(z_{n}\right)$ converge \Longrightarrow $\sum_{n=0}^{\infty} z_{n}$ converges (from part (i)).
(iii) + (iv) Yes. If R is the radius of convergence of $\sum_{n=0}^{\infty} a_{n} z^{n}$, then (as it was seen in class) $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges for any $|z|<R$ and diverges for any $|z|>R$. Therefore, if $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges, then $|z| \leq R$, and if $\sum_{n=0}^{\infty} a_{n} z^{n}$ diverges, then $|z| \geq R$.
b) Let R_{a} and R_{b} be the radiuses of convergence of $\sum_{n=0}^{\infty} a_{n} z^{n}$ and $\sum_{n=0}^{\infty} b_{n} z^{n}$. Then

$$
\sqrt[n]{\left|a_{n} b_{n}\right|}=\sqrt[n]{\left|a_{n}\right|} \sqrt[n]{\left|b_{n}\right|} \Longrightarrow \limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n} b_{n}\right|} \leq\left(\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}\right)\left(\limsup _{n \rightarrow \infty} \sqrt[n]{\left|b_{n}\right|}\right)
$$

- If $0<R_{a}, R_{b}<\infty$, then

$$
\frac{1}{R} \leq \frac{1}{R_{a}} \frac{1}{R_{b}} \Longrightarrow R \geq R_{a} R_{b}
$$

- If $R_{a}=\infty$ and $0<R_{b}$ (or $R_{b}=\infty$ and $0<R_{a}$), then $R=\infty$.
- If $R_{a}=0$ or $R_{b}=0$, then it could be that $R=0, \infty$ and $0<R<\infty$.
c) Let $f(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{s}}$, where $s \in \mathbb{R}$. Denote $a_{n}=\frac{1}{n^{s}}$, so

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{s}=1, \forall s \in \mathbb{R}
$$

Therefore the radius of convergence is $R=1$.

- Let $s=-2$, then

$$
f(z)=\sum_{n=0}^{\infty} n^{2} z^{n}
$$

Notice that the function

$$
\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}
$$

is analytic in $\operatorname{Ball}_{1}(0)$, which implies that

$$
\frac{1}{(1-z)^{2}}=\left(\frac{1}{1-z}\right)^{\prime}=\sum_{n=1}^{\infty} n z^{n-1} \Longrightarrow \sum_{n=1}^{\infty} n z^{n}=\frac{z}{(1-z)^{2}}, \forall z \in \operatorname{Ball}_{1}(0)
$$

with the same radius of convergence; once again, this implies that

$$
\begin{aligned}
& \frac{1+z}{(1-z)^{3}}=\left(\frac{z}{(1-z)^{2}}\right)^{\prime}= \sum_{n=11}^{\infty} n^{2} z^{n-1} \Longrightarrow \sum_{n=1}^{\infty} n^{2} z^{n}=\frac{z(1+z)}{(1-z)^{3}} \\
& \Longrightarrow f(z)= \\
&(1-z)^{3}
\end{aligned}
$$

d) Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and plug it in the equation

$$
f\left(z^{2}\right)=z+f(z) \Longrightarrow \sum_{n=0}^{\infty} a_{n} z^{2 n}=z+\sum_{n=0}^{\infty} a_{n} z^{n}
$$

Compare the coefficients in both sides, we get

$$
a_{1}=-1,
$$

$$
a_{2 n+1}=0, \forall n \geq 1 \quad a_{n}=a_{2 n}, \forall n \geq 1
$$

so from these equalities we see that for any $n \geq 1$,

$$
a_{n}=\left\{\begin{array}{l}
0: n \neq 2^{k} \\
-1: n=2^{k}
\end{array}\right.
$$

so

$$
f(z)=a_{0}-\sum_{n=0}^{\infty} z^{2^{n}}
$$

with radius of convergence equal to 1 (as $\sqrt[n]{\left|a_{n}\right|}=1$ for $n=2^{k}$ and $\sqrt[n]{\left|a_{n}\right|}=0$ otherwise).

3. Question 3.

a) Proved in class.
b) We use the fact that $e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$ for every $z \in \mathbb{C}$, to show that

$$
\begin{aligned}
\sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}=\frac{1}{2 i} & \left(\sum_{n=0}^{\infty} \frac{(i z)^{n}}{n!}-\sum_{n=0}^{\infty} \frac{(-i z)^{n}}{n!}\right)=\frac{1}{2 i} \sum_{n=0}^{\infty} \frac{(i z)^{n}\left(1-(-1)^{n}\right)}{n!} \\
& =\frac{2}{2 i} \sum_{2 \nmid n} \frac{(i z)^{n}}{n!}=\frac{1}{i} \sum_{k=0}^{\infty} \frac{(i z)^{2 k+1}}{(2 k+1)!}=\sum_{k=0}^{\infty} \frac{(-1)^{k} z^{2 k+1}}{(2 k+1)!}
\end{aligned}
$$

and that

$$
\begin{array}{r}
\cos (z)=\frac{e^{i z}+e^{-i z}}{2}=\frac{1}{2}\left(\sum_{n=0}^{\infty} \frac{(i z)^{n}}{n!}+\sum_{n=0}^{\infty} \frac{(-i z)^{n}}{n!}\right)=\frac{1}{2} \sum_{n=0}^{\infty} \frac{(i z)^{n}\left(1+(-1)^{n}\right)}{n!} \\
=\frac{2}{2} \sum_{2 \mid n} \frac{(i z)^{n}}{n!}=\sum_{k=0}^{\infty} \frac{(i z)^{2 k}}{(2 k)!}=\sum_{k=0}^{\infty} \frac{(-1)^{k} z^{2 k}}{(2 k)!}
\end{array}
$$

for every $z \in \mathbb{C}$.
c) We know that

$$
(1-z)\left(1+\ldots+z^{N}\right)=1-z^{N+1} \Longrightarrow \sum_{n=0}^{N} z^{n}=\frac{1-z^{N+1}}{1-z}, \forall N \geq 1
$$

and as $\lim _{N \rightarrow \infty} z^{N+1}=0$ for every $|z|<1$, we get that

$$
\lim _{N \rightarrow \infty}\left(\sum_{n=0}^{N} z^{n}\right)=\lim _{N \rightarrow \infty} \frac{1-z^{N+1}}{1-z}=\frac{1}{1-z}
$$

which means that the sum $\sum_{n=0}^{\infty} z^{n}$ converges to the function $f(z)=\frac{1}{1-z}$, when $|z|<1$; this is also the radius of convergence $(R=1)$. Therefore,

$$
\frac{1}{z-z_{0}}=\frac{1}{\left(z_{1}-z_{0}\right)+\left(z-z_{1}\right)}=\frac{1}{\left(z_{1}-z_{0}\right)\left(1+\frac{z-z_{1}}{z_{1}-z_{0}}\right)}=\frac{1}{z_{1}-z_{0}} \cdot \frac{1}{1-\frac{z-z_{1}}{z_{0}-z_{1}}}
$$

so for every z such that $\left|\frac{z-z_{1}}{z_{0}-z_{1}}\right|<1$, we have

$$
\frac{1}{z-z_{0}}=\frac{1}{z_{1}-z_{0}} \cdot \sum_{n=0}^{\infty}\left(\frac{z-z_{1}}{z_{0}-z_{1}}\right)^{n}=\sum_{n=0}^{\infty} a_{n}\left(z-z_{1}\right)^{n}
$$

where

$$
a_{n}=-\left(\frac{1}{z_{0}-z_{1}}\right)^{n+1}
$$

The radius of convergence is given by

$$
\frac{1}{R}=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{\left|z_{0}-z_{1}\right|} \Longrightarrow R=\left|z_{0}-z_{1}\right|
$$

d) Let $a_{n}=\frac{(-1)^{n+1}}{n}$ for $n \geq 1$, then it is easily seen that

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{n}{n+1}\right| \longrightarrow 1, \text { as } n \rightarrow \infty
$$

and so the radius of convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n+!}}{n} z^{n}$ is equal to 1 . Then we can define the function

$$
f(z):=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^{n}
$$

which is analytic in the ball $\operatorname{Ball}_{1}(0)$ and we know that we have

$$
f^{\prime}(z)=\sum_{n=1}^{\infty}(-1)^{n+1} z^{n-1}=\sum_{k=0}^{\infty}(-z)^{k}
$$

for every $z \in \operatorname{Ball}_{1}(0)$. On the other hand, if $z \in \operatorname{Ball}_{1}(0)$, then $\in \operatorname{Ball}_{1}(0)$ and hence we know that

$$
f^{\prime}(z)=\sum_{k=0}^{\infty}(-z)^{k}=\frac{1}{1+z}=(\log (z+1))^{\prime}(z)
$$

where $z+1 \in \mathbb{C} \backslash \mathbb{R}_{-}$as $|z|<1$. This implies that

$$
f(z)=\log (z+1)+c
$$

for some constant $c \in \mathbb{C}$, however for $z=0$ we get $f(0)=0=\log (1)+c=c$, so

$$
f(z)=\log (z+1), \forall z \in \operatorname{Ball}_{1}(0)
$$

e) From the previous part we know that

$$
\log \left(1+z^{3}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^{3 n}, \forall z \in \operatorname{Ball}_{1}(0)
$$

and hence that

$$
z^{3} \log \left(1+z^{3}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^{3 n+3}=\sum_{k=2}^{\infty} \frac{(-1)^{k}}{k-1} z^{3 k}, \forall z \in \operatorname{Ball}_{1}(0)
$$

4. Question 4.

Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ with $a_{n} \in \mathbb{R}$ and suppose the sum converges in $\operatorname{Ball}_{r}(0)$. a) Suppose that $f(x)=0$ for all $x \in(-\epsilon, \epsilon)$ for some $\epsilon>0$. From the assumption, the function $f(z)$ is analytic in $\operatorname{Ball}_{r}(0)$, so one can write

$$
f(z)=u(x, y)+i v(x, y)
$$

and we know that u, v satisfy the Cauchy-Riemann equations at every point in $\operatorname{Ball}_{r}(0)$. From the assumption

$$
0=f(x)=u(x, 0)+i v(x, 0), \forall x \in(-\epsilon, \epsilon)
$$

so $u(x, 0)=v(x, 0)=0$ for all $x \in(-\epsilon, \epsilon)$ and hence by definition we get that

$$
u(0,0)=v(0,0)=0
$$

and

$$
\frac{\partial^{k} u}{x^{k}}(0,0)=\frac{\partial^{k} v}{x^{k}}(0,0)=0, \forall k \geq 1
$$

but from Cauchy-Riemann we know that

$$
f^{(k)}(0)=\frac{\partial^{k} u}{\partial x^{k}}(0,0)+i \frac{\partial^{k} v}{\partial x^{k}}(0,0)=0, \forall k \geq 0
$$

On the other hand, from the analyticity of f, for every $k \geq 0$ we have

$$
f^{(k)}(0)=\left.\left(\sum_{n=k}^{\infty} n(n-1) \cdots(n-(k-1)) a_{n} z^{n-k}\right)\right|_{z=0}=k!a_{k}
$$

so $k!a_{k}=0$, i.e., $a_{k}=0$ for all $k \geq 0$, which means that $f(z)=0$ for all $z \in \operatorname{Ball}_{r}(0)$.
b) A direct use of the first part (so we skip some details); define the function

$$
h(z)=\sum_{k=1}^{n} c_{k} \frac{\partial^{k} f(z)}{\partial z^{k}}+c_{0}
$$

As $f(z)$ is analytic in $\operatorname{Ball}_{r}(0)$, so is $h(z)$. From the assumption, it follows that $h(x)=0$ for all $x \in(-\epsilon, \epsilon)$ and hence $h(z)=0$ for all $z \in \operatorname{Ball}_{r}(0)$.

[^0]: Date: April 3, 2019.

