
HOMEWORK SHEET 4: SOLUTIONS

INTRODUCTION TO COMPLEX ANALYSIS FOR ELECTRIC ENGINEERING

1. Question 1:

Let Log(z) be the main branch (”Anaf Rashee”) of the logarithm; Recall that
Log : C \ R− → C is given by

Log(z) = ln(r) + iθ,

where z = reiθ with −π < θ < π.

a) Let a, b ∈ R. Write a + ib = reiθ for −π ≤ θ < π and r ≥ 0, then

a + ib

a − ib
=

reiθ

re−iθ
= e2θi.

Therefore,

Log

(
a + ib

a − ib

)
= Log(e2θi) =

⎧
⎪⎨

⎪⎩

2θi : if − π
2 < θ < π

2

(2θ − 2π)i : if π
2 < θ < π

(2θ + 2π)i : if − π < θ < −π
2

where θ = arctan
(

b
a

)
.

b) Log is 1 − 1: Let z1, z2 ∈ C \ R− and suppose that Log(z1) = Log(z2). Write
both z1 and z2 in their polar coordinates z1 = r1eiθ1 , z2 = r2eiθ2 , thus

Log(z1) = Log(z2) =⇒ ln(r1) + iθ1 = ln(r2) + iθ2 =⇒ ln(r1) = ln(r2), θ1 = θ2

and as ln is 1 − 1 in R, we get that r1 = r2, θ1 = θ2 =⇒ z1 = z2.
• Let Raya,b = {(at, bt) : t ∈ R>0}, then the image of Log on Raya.b is given by

Log(Raya,b) = {Log(at + ibt) : t ∈ R>0} = {Log(t
√

a2 + b2eiθ) : t ∈ R>0}

= {ln(t
√

a2 + b2) + iθ : t ∈ R>0} = {z : Im(z) = θ}

and this is exactly the line in C where the imaginary part is equal to the constant
−π < θ = arctan

(
b
a

)
< π.

c)(i) No. Take z = 2πi, so Log(e2πi) = Log(e0i) = 0 ̸= 2πi.

(ii) Yes. Follows from the definition of Log.

(iii) No. As in (i); take z = 0, so Log(e2πi) = 0 ̸= 2πi.
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(iv) Yes. Let z = reiθ, with −π < θ < π, then

Log

(
1
z

)
= Log

(
1
r
e−iθ

)
= ln

(
1
r

)
+ (−iθ) = − ln(r) − iθ = −Log(z),

as −π < θ < π =⇒ −π < −θ < π.

(v) No. Take z = w = e
3
4 πi, then

Log(zw) = Log(e
3
2 πi) = Log(e−

π
2 i) = −π

2
i ̸= 3

2
πi = 2Log(e

3
4 πi) = Log(z)+Log(w).

(vi) Yes. Suppose Re(z), Re(w) > 0, thus we can write z = r1eiθ1 , w = r2eiθ2

where −π
2 < θ1, θ2 < π

2 and hence

Log(zw) = Log(r1r2e
i(θ1+θ2)) = ln(r1r2) + i(θ1 + θ2)

= ln(r1) + iθ1 + ln(r2) + iθ2 = Log(z) + Log(w)

where the second equality holds because −π < θ1 + θ2 < π.

d) No. Suppose there exists F : C \ {0} → C analytic such that

F ′(z) =
1
z
, ∀z ∈ C \ {0}.

Consider the function Log : C \ R− → C; we know that for every

(Log)′(z) =
1
z
, ∀z ∈ C \ R−,

therefore (F − Log)′(z) = 0 for every z ∈ C \ R− and hence

∃C ∈ C such that F (z) − Log(z) = C, ∀z ∈ C \ R−.

From the assumption, the function F is continuous at z = −1 and so we must have

F (−1) = lim
θ→π−

F (eiθ) = lim
θ→−π+

F (eiθ),

but for every −π < θ < π, F (eiθ) = Log(eiθ) + C = iθ + C, therefore we get

F (−1) = lim
θ→π−

(iθ + C) = iπ + C = lim
θ→−π+

(iθ + C) = −iπ + C

which is clearly a contradiction.

2. Question 2.

a)(i) Yes.
∑∞

n=0 zn converges ⇐⇒ the sequence aN =
∑N

n=0 zn converges (by
definition) ⇐⇒ the sequences

Re(aN ) =
N∑

n=0

Re(zn) and Im(aN ) =
N∑

n=0

Im(zn)

converge (see question 3.a)(i) in Exercise 1) ⇐⇒
∑∞

n=0 Re(zn) and
∑∞

n=0 Im(zn)
converge (definition of convergence in R).

(ii) Yes. If
∑∞

n=0 zn is absolutely converges, then
∑∞

n=0 |zn| converges. As

0 ≤ |Re(zn)| ≤ |zn| and 0 ≤ |Im(zn)| ≤ |zn|,
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using the convergence theorems from Calculus in R, we know that
∑∞

n=0 |Re(zn)|
and

∑∞
n=0 |Im(zn)| converge =⇒

∑∞
n=0 Re(zn) and

∑∞
n=0 Im(zn) converge =⇒∑∞

n=0 zn converges (from part (i)).

(iii)+(iv) Yes. If R is the radius of convergence of
∑∞

n=0 anzn, then (as it was
seen in class)

∑∞
n=0 anzn converges for any |z| < R and diverges for any |z| > R.

Therefore, if
∑∞

n=0 anzn converges, then |z| ≤ R, and if
∑∞

n=0 anzn diverges, then
|z| ≥ R.

b) Let Ra and Rb be the radiuses of convergence of
∑∞

n=0 anzn and
∑∞

n=0 bnzn.
Then

n
√

|anbn| = n
√

|an| n
√

|bn| =⇒ lim sup
n→∞

n
√

|anbn| ≤ (lim sup
n→∞

n
√

|an|)(lim sup
n→∞

n
√

|bn|).

• If 0 < Ra, Rb < ∞, then
1
R

≤ 1
Ra

1
Rb

=⇒ R ≥ RaRb.

• If Ra = ∞ and 0 < Rb (or Rb = ∞ and 0 < Ra), then
R = ∞.

• If Ra = 0 or Rb = 0, then it could be that R = 0,∞ and 0 < R < ∞.

c) Let f(z) =
∑∞

n=1
zn

ns , where s ∈ R. Denote an = 1
ns , so

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = lim
n→∞

(
n

n + 1

)s

= 1, ∀s ∈ R.

Therefore the radius of convergence is R = 1.
• Let s = −2, then

f(z) =
∞∑

n=0

n2zn.

Notice that the function
1

1 − z
=

∞∑

n=0

zn

is analytic in Ball1(0), which implies that

1
(1 − z)2

=
(

1
1 − z

)′
=

∞∑

n=1

nzn−1 =⇒
∞∑

n=1

nzn =
z

(1 − z)2
, ∀z ∈ Ball1(0)

with the same radius of convergence; once again, this implies that

1 + z

(1 − z)3
=

(
z

(1 − z)2

)′
=

∞∑

n=2

n2zn−1 =⇒
∞∑

n=2

n2zn =
z(1 + z)
(1 − z)3

=⇒ f(z) = z +
z(1 + z)
(1 − z)3

=
z(2 − 2z + 3z2 − z3)

(1 − z)3
.

d) Let f(z) =
∑∞

n=0 anzn and plug it in the equation

f(z2) = z + f(z) =⇒
∞∑

n=0

anz2n = z +
∞∑

n=0

anzn.
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Compare the coefficients in both sides, we get

a1 = −1,

a2n+1 = 0, ∀n ≥ 1
an = a2n, ∀n ≥ 1

so from these equalities we see that for any n ≥ 1,

an =

{
0 : n ̸= 2k

−1 : n = 2k

so

f(z) = a0 −
∞∑

n=0

z2n

with radius of convergence equal to 1 (as n
√

|an| = 1 for n = 2k and n
√

|an| = 0
otherwise).

3. Question 3.

a) Proved in class.

b) We use the fact that ez =
∑∞

n=0
zn

n! for every z ∈ C, to show that

sin(z) =
eiz − e−iz

2i
=

1
2i

( ∞∑

n=0

(iz)n

n!
−

∞∑

n=0

(−iz)n

n!

)
=

1
2i

∞∑

n=0

(iz)n(1 − (−1)n)
n!

=
2
2i

∑

2!n

(iz)n

n!
=

1
i

∞∑

k=0

(iz)2k+1

(2k + 1)!
=

∞∑

k=0

(−1)kz2k+1

(2k + 1)!

and that

cos(z) =
eiz + e−iz

2
=

1
2

( ∞∑

n=0

(iz)n

n!
+

∞∑

n=0

(−iz)n

n!

)
=

1
2

∞∑

n=0

(iz)n(1 + (−1)n)
n!

=
2
2

∑

2|n

(iz)n

n!
=

∞∑

k=0

(iz)2k

(2k)!
=

∞∑

k=0

(−1)kz2k

(2k)!
,

for every z ∈ C.

c) We know that

(1 − z)(1 + . . . + zN ) = 1 − zN+1 =⇒
N∑

n=0

zn =
1 − zN+1

1 − z
, ∀N ≥ 1

and as limN→∞ zN+1 = 0 for every |z| < 1, we get that

lim
N→∞

(
N∑

n=0

zn

)
= lim

N→∞

1 − zN+1

1 − z
=

1
1 − z
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which means that the sum
∑∞

n=0 zn converges to the function f(z) = 1
1−z , when

|z| < 1; this is also the radius of convergence (R = 1). Therefore,

1
z − z0

=
1

(z1 − z0) + (z − z1)
=

1
(z1 − z0)(1 + z−z1

z1−z0
)

=
1

z1 − z0
· 1

1 − z−z1
z0−z1

so for every z such that
∣∣∣ z−z1
z0−z1

∣∣∣ < 1, we have

1
z − z0

=
1

z1 − z0
·

∞∑

n=0

(
z − z1

z0 − z1

)n

=
∞∑

n=0

an(z − z1)n

where

an = −
(

1
z0 − z1

)n+1

.

The radius of convergence is given by
1
R

= lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ =
1

|z0 − z1|
=⇒ R = |z0 − z1|.

d) Let an = (−1)n+1

n for n ≥ 1, then it is easily seen that
∣∣∣
an+1

an

∣∣∣ =
∣∣∣

n

n + 1

∣∣∣ −→ 1, as n → ∞

and so the radius of convergence of
∑∞

n=1
(−1)n+!

n zn is equal to 1. Then we can
define the function

f(z) :=
∞∑

n=1

(−1)n+1

n
zn

which is analytic in the ball Ball1(0) and we know that we have

f ′(z) =
∞∑

n=1

(−1)n+1zn−1 =
∞∑

k=0

(−z)k

for every z ∈ Ball1(0). On the other hand, if z ∈ Ball1(0), then ∈ Ball1(0) and
hence we know that

f ′(z) =
∞∑

k=0

(−z)k =
1

1 + z
= (Log(z + 1))′(z),

where z + 1 ∈ C \ R− as |z| < 1. This implies that

f(z) = Log(z + 1) + c

for some constant c ∈ C, however for z = 0 we get f(0) = 0 = Log(1) + c = c, so

f(z) = Log(z + 1), ∀z ∈ Ball1(0).

e) From the previous part we know that

Log(1 + z3) =
∞∑

n=1

(−1)n+1

n
z3n, ∀z ∈ Ball1(0)

and hence that

z3Log(1 + z3) =
∞∑

n=1

(−1)n+1

n
z3n+3 =

∞∑

k=2

(−1)k

k − 1
z3k, ∀z ∈ Ball1(0).
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4. Question 4.

Let f(z) =
∑∞

n=0 anzn with an ∈ R and suppose the sum converges in Ballr(0).
a) Suppose that f(x) = 0 for all x ∈ (−ϵ, ϵ) for some ϵ > 0. From the assumption,
the function f(z) is analytic in Ballr(0), so one can write

f(z) = u(x, y) + iv(x, y)

and we know that u, v satisfy the Cauchy-Riemann equations at every point in
Ballr(0). From the assumption

0 = f(x) = u(x, 0) + iv(x, 0), ∀x ∈ (−ϵ, ϵ)

so u(x, 0) = v(x, 0) = 0 for all x ∈ (−ϵ, ϵ) and hence by definition we get that

u(0, 0) = v(0, 0) = 0

and
∂ku

xk
(0, 0) =

∂kv

xk
(0, 0) = 0, ∀k ≥ 1,

but from Cauchy-Riemann we know that

f (k)(0) =
∂ku

∂xk
(0, 0) + i

∂kv

∂xk
(0, 0) = 0, ∀k ≥ 0.

On the other hand, from the analyticity of f , for every k ≥ 0 we have

f (k)(0) =
( ∞∑

n=k

n(n − 1) · · · (n − (k − 1))anzn−k
)
|z=0= k!ak,

so k!ak = 0, i.e., ak = 0 for all k ≥ 0, which means that f(z) = 0 for all z ∈ Ballr(0).

b) A direct use of the first part (so we skip some details); define the function

h(z) =
n∑

k=1

ck
∂kf(z)

∂zk
+ c0.

As f(z) is analytic in Ballr(0), so is h(z). From the assumption, it follows that
h(x) = 0 for all x ∈ (−ϵ, ϵ) and hence h(z) = 0 for all z ∈ Ballr(0).


